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The main interest now is the development of metallic or inorganic-organic compounds to prepare nanoparticle 
materials. The use of new compounds could be benefi cial and open a new method for preparing nanomaterials to 
control the size, shape, and size of the nanocrystals. In this article, the thermal decomposition of [M2(o-tol)2(H2O)8]
Cl4 (where o-tol is ortho-tolidine compound, M = Ni2+, Co2+, Cu2+) new precursor complex was discussed in 
solid-state conditions. The thermal decomposition route showed that the synthesized three complexes were easily 
decomposed into NiO, Co3O4 and CuO nanoparticles. This decomposition was performed at low temperatures 
(~600oC) in atmospheric air without using any expensive and toxic solvent or complicated equipment. The obtained 
product was identifi ed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission 
electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). FT-IR, XRD and EDX analyses 
revealed that the NiO nanoparticles exhibit a face-centered-cubic lattice structure with a crystallite size of 9–12 nm. 
The formation of a highly pure spinel-type Co3O4 phase with cubic structure showed that the Co3O4 nanoparticles 
have a sphere-like morphology with an average size of 8–10 nm. The XRD patterns of the CuO confi rmed that 
the monoclinic phase with the average diameter of the spherical nanoparticles was approximately 9–15 nm.
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INTRODUCTION

                                               Ortho-tolidine is an organic compound with the mole-
cular formula (CH3–C6H4–NH2)2. It is a colorless organic 
compound, slightly soluble in water, forms salts with 
acids, used mainly for dye production1, as intermediate to 
produce soluble azo dyes and insoluble textile pigments, 
leather, paper industries, and to produce certain elasto-
mers. o-Tolidine was widely used as a reagent/indicator 
in analytical, clinical, and forensic chemistry, such as in 
the analytical determination of gold, or determination of 
the chlorine level in swimming pool water2.

Transition metal oxide nanoparticles represent an im-
portant class of inorganic nanomaterials that have been 
investigated extensively due to their interesting catalytic, 
electronic, and magnetic properties relative to those of the 
bulk counterparts, and the wide scope of their potential 
applications3. The nickel oxide nanoparticles (NiO) are 
one of the supreme transition metal oxides, it has been 
a p-type semiconductor behavior. The different features of 
the NiO nanoparticles have prompted different research 
topics. The quantum size, high specifi c surface area, volume, 
and macroscopic quantum tunneling effects revealed the 
unique magnetic, electronic, catalytic, chemical, and opti-
cal properties of the NiO nanoparticles. These properties 
encouraged their extensive application in ultra-magnetic 
devices, photoelectric smart windows, photocatalytic ap-
plications, electrochemical supercapacitors, photoelectric 
devices, and gas sensors4–9. NiO nanoparticles are also 
magnetic nanoparticles with good electrochemical activity, 
which motivate their use in electrochemical biosensors8, 9. 
Cobalt oxide (Co3O4) with spinel-type as a semiconductor 
material having realizable applications in gas sensors10, hete-
rogeneous catalysts11, electrochemical devices12, lithium-ion 

batteries13, materials magnetism14, 15 and photocatalysts16. 
In literature, increasing interest has been focused on the 
synthesis of Co3O4 nanostructures due to the infl uence of 
particle size on their properties and applications17. Various 
wet chemical methods such as hydrothermal/thermal solvent 
method18, combustion method19, microwave heating20, gel 
solution process21, spray pyrolysis22, sonochemical method23, 
co-sedimentation24, ionic liquid-assisted method25, a polyol 
method26 and a non-aqueous method27 are reported for 
the assembly of Co3O4 nanostructures. However, most 
of these methods involve complex processes, high sinte-
ring temperatures, and expensive and toxic precursors. 
Additionally, they are either time-consuming or require 
expensive tools. Solid-state thermolysis of molecular pre-
cursors is the simplest and least expensive to preparing 
metal oxide nanostructures. This promising technology 
offers many unique advantages and signifi cant advantages 
over other methods including easy work, relatively short 
reaction time, and preparation of numerous inorganic 
nanomaterials with unique sizes, specifi c shapes, and nar-
row size distribution28. The copper oxide (CuO) has been 
studied as a p-type semiconductor material with a narrow 
band gap of 1.2 eV, because of its natural abundance of 
raw materials, low-cost production processing, non-toxic 
nature, and reasonably good electrical and optical proper-
ties. CuO nanoparticles have been of great interest due 
to their potential applications in a wide range of fi elds 
including electronic and optoelectronic devices, such as 
microelectromechanical systems, fi eld-effect transistors, 
electrochemical cells, gas sensors, magnetic storage media, 
solar cells, and fi eld emitters, and nanocatalysis devices. 
It has also been emphasized recently that regardless of 
size, the shape of the nanostructure is equally important 
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for controlling various properties29. The main task of this 
work is to synthesis nanoparticles of NiO, Co3O4, and 
CuO using the thermal decomposition method and its 
physicochemical characterizations. 

This article is aimed to synthesis of three transition 
metal oxide nanoparticles from a simple precursor in 
a short time and with an easy, low temperature, low-cost 
method without using any special instrument. To the best 
of our knowledge, this is the fi rst report on the synthesis 
of NiO, Co3O4, and CuO nanoparticles from aromatic 
amine with [M2(o-tol)2(H2O)8]Cl4 precursor complex.

EXPERIMENTAL

Chemicals and Instrument Techniques 
All the chemicals (NiCl2 

. 6H2O, CoCl2 
. 6H2O, 

CuCl2 
. 2H2O, and ortho-tolidine) and the solvents (me-

thanol) were purchased from Sigma-Aldrich Chemical 
Company and used without further purifi cation. The 
FT-IR spectra were recorded in the range 4000–400 
cm–1 on Bruker FTIR Spectrophotometer. The electronic 
spectra were recorded in the range 200–800 nm at room 
temperature in the solid-state using a UV2 Unicam UV/
Vis Spectrophotometer. Microanalyses (C, H and N) 
were recorded on a Perkin Elmer 2400 CHN analyzer. 
Melting points of the compounds were determined in 
open capillaries in an electrical MPS10-120 melting po-
int apparatus. The magnetic moments were determined 
on a Guoy balance and the diamagnetic corrections of 
the complexes were calculated using Pascal’s constants. 
Molar conductivities were measured in DMSO solution 
at 10–3 M concentration using a Jenway 4010 conductivity 
meter. The metal contents were estimated with a gravi-
metrical method at 800oC by converted the synthesized 
metal complexes to metal oxides as a stable form that 
suitable to calculate the percentage of metal ions. The 
X-ray diffraction patterns were recorded on X ‘Pert PRO 
PANanalytical X-ray powder diffraction, target copper 
with secondary monochromate. The transmission electron 
microscopy images (TEM) were performed using JEOL 
100s microscopy. 

Synthesis of ortho-tolidine precursor complex and na-
noparticle oxides

The precursors [M2(o-tol)2(H2O)8]Cl4 (where o-tol is 
ortho-tolidine compound, M = Ni2+, Co2+, Cu2+) were 
synthesized according to the briefl y steps as follows, 
4.25 grams of ortho-tolidine (20 mmol) was dissolved 
in 20 mL of methanol, and 20 mL of water solution 
of NiCl2 

. 6H2O, CoCl2 
. 6H2O, or CuCl2 

. 2H2O (20 
mmol) was added with heating at 70oC and continuously 
stirring. The color precipitates of [M2(o-tol)2(H2O)8]Cl4, 
are collected on a paper fi lter, washed with methanol 
and ether, and then dried under vacuum over anhydrous 
calcium chloride. The composition of the complexes was 
confi rmed by elemental analysis, electronic, magnetic, 
molar conductance, FT-IR, and thermal analyses. Anal. 
calc. for [Ni2(o-tol)2(H2O)8]Cl4: C, 40.62; H, 5.84; N, 6.77; 
Cl, 17.13; Ni, 14.18; found: C, 40.43; H, 5.82; N, 6.67; 
Cl, 17.08; Ni, 14.01, yield: 77%. M.p. 325oC. Anal. calc. 
for [Co2(o-tol)2(H2O)8]Cl4: C, 40.60; H, 5.84; N, 6.76; 
Cl, 17.12; Co, 14.23; found: C, 40.54; H, 5.80; N, 6.72; 

Cl, 17.11; Co, 14.12, yield: 73%. M.p. 359oC. Anal. calc. 
for [Cu2(o-tol)2(H2O)8]Cl4: C, 40.15; H, 5.78; N, 6.69; Cl, 
16.93; Cu, 15.17; found: C, 40.09; H, 5.70; N, 6.61; Cl, 
16.88; Cu, 15.03, yield: 79%. M.p. 368oC.

The NiO, Co3O4, and CuO nanoparticles were synthe-
sized by the thermal decomposition of [Ni2(o-tol)2(H2O)8]
Cl4, [Co2(o-tol)2(H2O)8]Cl4, and [Cu2(o-tol)2(H2O)8]Cl4 
complexes, respectively as a precursor. The resulting 
metal–complex in solid-state was calcinated at ~600oC 
for three hours and was then cooled to room temperature 
(Scheme 1). The color solid powders were washed with 
methanol at least three times to remove any impurities 
and dried at 100oC. 

Scheme 1. Thermal decomposition route of synthesis NiO, Co3O4, 
and CuO by using [M2(o-tol)2(H2O)8]Cl4 precursors

RESULTS AND DISCUSSION

Interpretations of [M2(o-tol)2(H2O)8]Cl4 precursors 

Analytical and molar conductance data 
The [M2(o-tol)2(H2O)8]Cl4 complexes of nickel, cobalt, 

and copper (II) metal ions were prepared by heating toge-
ther methanol/distilled H2O solutions of the appropriate 
ligand and metal chlorides with 1:1 molar ratio. All the 
prepared complexes are stable at room temperature. The 
prepared complexes are insoluble in methanol, ethanol, 
benzene, and acetonitrile, but soluble in DMSO and 
DMF. The analytical data (carbon, hydrogen, nitrogen, 
chloride, and metal ions percentages) are presented as 
mentioned in the experimental section. The molar con-
ductance values of the complexes of (10–3 M solution in 
DMSO) are found to be in the range of 180–225 ohm–1 
cm2 mol–1. These high values indicate that the complexes 
are ionic with an electrolytic nature15.
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assigned to 4T1g(F) →  4T2g(F), 4T1g(F)→4A2g(F) and 
4T1g(F) → 4T2g(P) electronic transitions respectively, 
due to octahedral geometry structure33. The absorp-
tion spectrum of nickel(II) complex included a three 
electronic bands at 27397 cm–1, 16287 cm–1, and 10288 
cm–1 assigned to 3A2g(F)→3T2g (F), 3A2g(F)→3T1g(F), and 
3A2g(F)→3T2g(P) transitions respectively, these transitions 
agreement with octahedral geometry. The magnetic mo-
ment of the copper(II) complex (1.81 BM ) is matched 
with the octahedral geometry. The magnetic moment 
value for the nickel (II) complex is 3.10 BM due to the 
octahedral environment around Ni(II) metal ion. Besides 
this, the magnetic moment of the cobalt (II) complex is 
4.64 BM which consistent with octahedral geometry33. 

Interpretations of prepared nickel, cobalt, and copper oxides
Nickel, cobalt, and copper oxides nanoparticles have 

been synthesized via thermal decomposition of a new 
precursor [M2(o-tol)2(H2O)8]Cl4 (M = Cu2+, Co2+, Ni2+) 
at ~ 600oC. The products were characterized by FT–IR, 
XRD, and TEM.

Characterizations of NiO oxide
Figure 2 illustrated the X-ray diffraction patterns for 

the NiO nanoparticles. Two very sharp signifi cant dif-
fraction peaks were detected at 2θ = 37.3o, and 44.4o 
assigned to (111) and (200) crystalline planes. The XRD 
spectrum indicates the face-centered cubic lattice struc-
ture with a high degree of crystallinity concerning the 
prepared NiO NPs. The average crystallite size (D) of 
NiO is estimated based on Debye–Scherrer formulas34; 
D = kλ ⁄βcosθ, where β = FWHM (full width at half 
maximum), θ is the diffraction angle corresponding to 
maximum intensity peak in XRD pattern (200), k is an 

Infrared spectra
By comparison between the spectra of both nickel, 

cobalt, copper(II) complexes (Fig. 1) and the data of 
o-tol ligand have been studied and assigned in Table 1. 
In the case of o-tol free ligand, the distinguish stretching 
vibration bands of ν(N-H) of NH2 group and some of 
stretching vibrations of ν(C-H) aromatic rings are exhi-
bited at 3475, 3412, 3375, 3338, 3213, 3019 cm–1 31. It is 
found that the frequencies of –NH2 groups are shifted 
to a lower wavenumber at the range 3466–3337 cm–1, 
which indicates that the interactions placed among the 
nitrogen of –NH2. To place greater emphasis on the 
interactions between the metal ions and o-tol ligand, 
the 2000–1000 cm–1 region was investigated. This region 
contains the bending vibration motions of –NH2 group 
δNH2 which is infl uenced by complexation and shifted to 
lower wavenumbers and consequently, the intensity was 
distorted. Peaks above 3400 cm–1 in the Co(II), Ni(II) and 
Cu(II) complexes, indicated the presence of coordinated 
water31. The conforming coordination evidence is also 
displayed by the presence of new bands in the spectra 
of all the complexes that occur in the range of 585–508 
cm–1 and 443–404 cm–1 are the characteristic bands of 
stretching vibrations ν(M-O) and ν(M-N) respectively31 
that are disappeared in the free ligand spectrum.

UV-Vis spectra and magnetic susceptibility
The electronic spectrum of copper(II) o-tol complex 

has three electronic absorption bands at 12422, 17007 and 
20747 cm–1 due to 2B1g→2B2g, 2B1g→2A2g and 2B1g →2E1g 
transitions respectively, which confi rmed that Cu(II) com-
plex has a distorted octahedral geometry32. The electronic 
spectrum of the cobalt(II) complex has three absorp-
tion bands at 10965 cm–1, 17544 cm–1 and 21505 cm–1 

Table 1. Infrared frequencies/cm–1 and tentative assignments of o-tol and its complexes
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proaching or exceeding one, respectively. It is evaluated 
using the following equation36: Icrys = D(TEM)⁄D(XRD). 
The crystallinity index is equal to 0.34, suggesting the 
mono-crystallinity of NiO nanoparticles. Figure 4 repre-
sents the FT IR spectrum of the prepared NiO NPs. The 
spectrum demonstrates a signifi cant peak at 466 cm–1 
which is related to the vibrational mode of Ni-O bond. 
The weak broad peaks occur at ~1630 cm–1 and 3400 
cm–1 are assigned to H-O-H bending vibrations mode 
and O-H stretching vibrations bond of crystalline water 
molecules as moisture on the surface of the prepared 
NiO oxide respectively31. Elemental analysis was perfor-
med to evaluate the elemental composition of the NiO 
NPs using EDX spectroscopy. The EDX spectrum of 
the NiO NPs exhibits distinguish peaks corresponding 
to Ni and O, as shown in Figure 5.

Characterizations of Co3O4 oxide
The XRD pattern of the prepared Co3O4 in  Figure 2, 

exhibits some diffraction peaks with 2θ values at 18.91°, 
31.27°, 36.75°, 38.43°, 44.76°, 55.57°, and 59.22°. These 
diffraction peaks can be indexed to the crystalline cubic 
phase Co3O4 with a space group of Fd3m, which agrees 
with the reported values (JCPDS Card No. 76–1802)37. 
This result confi rms that the Co3O4 phase started to 
appear at 600°C, as indicated by the FT-IR result (Fi-
gure 4). No impurity diffraction peaks were detected 
in the patterns, indicating that the product is of high 
purity. Furthermore, the diffraction peaks are markedly 
sharpness due to the small size effect of the particles. 
The average sizes of the Co3O4 particles were calculated 

empirical constant equal to 0.9. Figure 3a reveals the 
size, shape, and morphology of the prepared NiO NPs 
checked by TEM image. The average crystallite size is 
found to be 9–12 nm, moreover, the fi gure confi rms the 
spherical shape of NiO NPs with slight agglomeration. 
The spherical shape offers a good contact area, which 
is recommended for biosensing applications35. The cry-
stallinity index (Icrys) assigns the mono-crystallinity or 
poly-crystallinity of the nanoparticles if its value is ap-

Figure 1. FT IR spectra of a-Cu(II), b-Co(II), and c-Ni(II) o-tol 
complexes

Figure 2. XRD diffraction patterns of NiO, Co3O4, and CuO 
oxides
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by the Debye–Scherrer equation34. The average size of 
the Co3O4 nanoparticles calculated using the mo st in-
tense peak (311) at 2θ = 36.75° is approximately 12 nm. 
The TEM image and size distribution of the prepared 
Co3O4 NPs are shown in Figure 3. It can be seen from 
this Figure, that the nanoparticles show approximately 
black spots spherical morphologies with a uniform size. 
It is also can fi nd from this fi gure that the morphology 
of the particles is almost homogeneous. The diameter 
sizes of the prepared Co3O4 NPs are approximately in 
the range of 8 to 10 nm with a narrow size distribution. 
The average particle size is 10 nm, which agrees with the 
result calculated for the half-width of diffraction peaks 
using the Scherrer’s formula, allowing for experimental 
error. The FT-IR spectrum of the prepared Co3O4 has 
two strong bands of the spinel-type Co3O4 structure at 
about 672 and 590 cm–1 are observed. The former band 
is characteristic of Co3+–O vibration in an octahedral 
site, and the latter one is attributable to the Co2+–O 
vibration in a tetrahedral site of the Co3O4 lattice37, 38. 
The chemical purity and stoichiometry of the product 
were also examined by EDX analysis. Figure 5 shows the 
EDX spectrum of the Co3O4 nanoparticles prepared by 
the decomposition of [Co2(o-tol)2(H2O)8]Cl4 at 600°C. 
Only oxygen and cobalt elements existed in the product. 
The atomic percentages of Co and O were found to be 
71.02% and 28.98%, respectively. The carbon peak at 
about 0.277 keV corresponds to the TEM holding grid. 
No other elements can be detected, indicating the high 
purity of the Co3O4 nanoparticles.

Figure 3. TEM images of a-NiO, b-Co3O4, and c-CuO oxides

Figure 4. FT IR spectra of NiO, Co3O4, and CuO oxides
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at% of Cu and 44.38 at% of O. If it is in atomic %, 
theoretically the Cu will be 50% and O will be 50%. But 
in the experimental found 55.62 at% of Cu and 44.38 
at% of O. Because of the EDX, analysis techniques 
can select only one area. Thus, the amount of Cu and 
O in a different area may be different values, so in the 
dispersion of CuO nanoparticles were found into a high 
and poor dispersion, respectively. 
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