
42 Hasnat A, Ghosh A, Khatun A, Halder S. Pattern Classification of Fabric Defects Using a Probabilistic Neural Network and Its Hardware Implementation using the Field Programmable Gate Array System.
 FIBRES & TEXTILES in Eastern Europe 2017; 25, 1(121): 42-48. DOI: 10.5604/12303666.1227881

Pattern Classification of Fabric Defects
Using a Probabilistic Neural Network
and Its Hardware Implementation using
the Field Programmable Gate Array System
DOI: 10.5604/12303666.1227881

Abstract
This study proposes a fabric defect classification system using a Probabilistic Neural Ne-
twork (PNN) and its hardware implementation using a Field Programmable Gate Arrays
(FPGA) based system. The PNN classifier achieves an accuracy of 98 ± 2% for the test
data set, whereas the FPGA based hardware system of the PNN classifier realises about
94±2% testing accuracy. The FPGA system operates as fast as 50.777 MHz, corresponding
to a clock period of 19.694 ns.

Key words: classification, fabric defect, field programmable gate arrays, radial basis
function, probabilistic neural network.

Abul Hasnat1,
Anindya Ghosh1,
Amina Khatun2,
Santanu Halder3

1 Government College of Engineering
and Textile Technology,

Berhampore, West Benga, India
E-mail: abulhasnat@gmail.com,

anindya.textile@gmail.com,
2 Jadavpur University,

Kolkata, West Bengal, India
E-mail: aminak77@gmail.com
3 Government Govt. College

 of Engineering & Leather Technology,
Kolkata, West Bengal, India

E-mail: sant.halder@gmail.com Introduction
We must acknowledge the reality that
every mass production system engen-
ders a wide variety of flaws or defects
in its products, and in this the respect
textile industry is no exception. In the
weaving shed, the production of flaw-
less woven fabrics principally preoc-
cupies the probing eye of the quality
control department because a defective
piece of fabric would weigh heavily on
the cost burden of the garment industry
and a second or off-quality product can
barely reclaim more than 45-60% of the

value of a fresh product. Different types
of fabric defects are as follows: neps,
broken threads, broken picks, and oil
strains. Sample images of these defects
are shown in Figure 1. In the cut-throat
competitive market of today, a conscious
and discerning buyer would be expect
to have zero tolerance for defects. And
present day state-of-the-art technology
enables a weaving machine to insert the
weft at a rate of over 2000 m/min. Hav-
ing scaled such a fantastic height for the
weft insertion rate, a machine producing
defective fabrics that escapes the vigi-
lant eye of the weaver can be halted to

Figure 1. Typical image of different fabric defects: (a) oil stain, (b) broken end, (c) neps,
(d) broken pick.

a) b)

c) d)

43FIBRES & TEXTILES in Eastern Europe 2017, Vol. 25, 1(121)

set right its malfunctioning not before
an appreciable length of fabric has been
woven forth. Hence it is highly desirable
that as soon as a defect starts generating,
it must be detected and its class must be
ascertained so that the right remedial ac-
tion can be initiated for the earliest res-
toration. Therefore the need of the hour
is a real time on-line automatic fabric
inspection system.

Recently Field Programmable Gate Ar-
rays (FPGA) have become the dominant
form of programmable logic [1-4]. FPGA
can implement far larger logic functions
compared to other programmable devices
like programmable array logic (PAL) and
complex programmable logic (CPLD).
FPGA supports sufficient logic to imple-
ment complete systems and sub-systems
for real time applications. FPGA exploits
the increasing capacity of integrated cir-
cuits to provide designers with reconfig-
urable logic that can be programmed on
an application-specific basis. FPGA de-
sign allows designers to create their own
modules according to their needs and
further upgrade the system convenient-

Figure 2. Flowchart of fabric defect classi-
fication system.

ly. This drastically increases flexibility
in both the design process and the final
artifact by permitting one board-level
design to perform many functions, or to
be upgraded in the field. A system design
based on FPGA is flexible, with the ad-
vantages of parallelism and low cost. But
little work has been reported in the liter-
ature [5-6] related to the application of
FPGA in textile technology. Hai-feng [5]
used the Gabor filtering algorithm for de-
fect detection and implemented the same
using FPGA. Diana et al. [6] reported on
the development of wearable smart fab-
rics with wireless communication capa-
bilities using FPGA.

In this study, a Field Programmable Gate
Array(FPGA) based fabric defect clas-
sification system using a Probabilistic
Neural Network(PNN) is proposed to
identify different fabric defects. Firstly
a multi-class PNN [7-15] is used to con-
struct a pattern recognition system for
classifying fabric defects under different
categories. In the case of the PNN clas-
sifier, the training process requires the
computation of two equations only for

Figure 3. Schematic representation of PNN architecture.

FIBRES & TEXTILES in Eastern Europe 2017, Vol. 25, 1(121)44

 Fabric defect classification:
PNN based software approach

The yarn defect classification system
consists of the following steps – i) cap-
turing images of the yarn defects, ii)
feature extraction from the captured im-
ages, and iii) classification of the images
using the Probabilistic Neural Network.
The pattern recognition system for clas-
sifying fabric defects can be partitioned
into a numbers of steps, as illustrated in
Figure 2 (see page 43). In this article,
an attempt has been made to implement
a FPGA based system for the classifi-
cation step only. For this purpose, Tsai
et al’s [16] experimental data has been
used, where they employed a grey lev-
el co-occurrence matrix to obtain the
feature parameters f1, f2, f3, f4, f5 & f6 for
various defect categories such as neps,
broken ends, broken picks and oil strains.
The categories are identified by num-
bers, namely, 1-normal, 2-nep, 3-bro-
ken threads, 4-broken picks, 5-oil strain.
Among the feature vectors, f1, f2, f3, and f4
are the contrast measurement of texture
images along 0°, 45°, 90° and 135° when
spatial displacement d = 1, while f5 and f6
are the contrast values at d = 12, θ = 0°
and d = 16, θ = 90°, respectively, where
θ is the direction angle. The dataset como-
prises of a total of 50 experimental data
encompassing 10 experiments per cate-
gory. Table 1 refers to the datasets repre-
senting various fabric defects. These fea-
tures are normalised in the range of [0 1]
using the following Equation (1)

    fi

(data set for which the output class is known) is less[7-9] compared to other classifiers.

The PNN training algorithm is a deterministic process, whereas the training algorithm of

other classifiers involves a convergence process (where the number of iteration cannot be

determined prior to execution). In a second application, a FPGA based hardware system is

designed for possible implementation of the PNN classifier for identifying fabric defects.

FABRIC DEFECT CLASSIFICATION: PNN BASED SOFTWARE APPROACH

 The yarn defect classification system consists of the following steps – i) capturing

images of the yarn defects, ii) feature extraction from the captured images, and iii)

classification of the images using the Probabilistic Neural Network. The pattern

recognition system for classifying fabric defects can be partitioned into a numbers of steps,

as illustrated in Figure 2. In this article, an attempt has been made to implement a FPGA

based system for the classification step only. For this purpose, Tsai et al’s [16]

experimental data has been used, where they employed a grey level co-occurrence matrix

to obtain the feature parameters f1, f2, f3, f4, f5 & f6 for various defect categories such as

neps, broken ends, broken picks and oil strains. The categories are identified by numbers,

namely, 1-normal, 2-nep, 3-broken threads, 4-broken picks, 5-oil strain. Among the feature

vectors, f1, f2, f3, and f4 are the contrast measurement of texture images along 0°, 45°, 90°

and 135° when spatial displacement d =1, while f5 and f6 are the contrast values at d = 12,

θ = 0° and d = 16, θ = 90°, respectively, where θ is the direction angle. The dataset

comprises of a total of 50 experimental data encompassing 10 experiments per category.

Table 1 refers to the datasets representing various fabric defects. These features are

normalised in the range of]10[using the following equation

}{}{

}{
'

ii

ii
i fMINfMAX

fMINf
f

 (1)    (1)

Five different categories, i.e., one for nor-
mal and the rest for four fabric defects,
are classified using the PNN. The train-
ing data set along with its known class is
used to train the PNN, and the test data
set is used for cross validation.

Figure 3 (see page 43) shows a block
diagram of the PNN classification sys-
tem. When an input is presented, the
hidden layer computes the distance
from the input vector to the training
input vectors. This produces a vector
whose elements indicate how close the
input is to the training inputs. The sum-
mation layer sums the contribution for
each class of inputs and produces its
net output as a vector of probabilities.
Finally a compete transfer function for
the output of the summation layer picks
the maximum of these probabilities and
indicates a particular class as the output.

Table 1. Dataset for various kinds of fabric defects.

Sample f1 f2 f3 f4 f5 f6 Defects*

1 0.3900 0.6402 0.3584 0.4205 0.3726 0.3434 1
2 0.4026 0.6362 0.3601 0.4320 0.3438 0.3442 1
3 0.3879 0.6161 0.3419 0.4153 0.3228 0.3547 1
4 0.3931 0.6381 0.3569 0.4284 0.3694 0.4308 1
5 0.3826 0.6298 0.3537 0.4234 0.3489 0.3435 1
6 0.3978 0.6433 0.3704 0.4430 0.3584 0.3811 1
7 0.3920 0.6464 0.3532 0.4221 0.3352 0.3859 1
8 0.3887 0.6363 0.3601 0.4202 0.3220 0.3257 1
9 0.3880 0.6322 0.3672 0.4302 0.3481 0.3378 1

10 0.3851 0.6228 0.3567 0.4361 0.3496 0.3371 1
11 0.3689 0.6188 0.3483 0.4026 0.4393 0.4813 2
12 0.3789 0.6173 0.3447 0.4042 0.3954 0.4213 2
13 0.3663 0.6173 0.3444 0.4045 0.4439 0.4788 2
14 0.3881 0.6345 0.3569 0.4305 0.4214 0.5121 2
15 0.3964 0.6362 0.3512 0.4236 0.4049 0.4210 2
16 0.3529 0.5768 0.3219 0.3865 0.4417 0.4725 2
17 0.3465 0.5874 0.3225 0.3819 0.4740 0.5255 2
18 0.3467 0.5767 0.313 0.3782 0.3845 0.4925 2
19 0.3697 0.5805 0.3232 0.3978 0.4660 0.4953 2
20 0.3537 0.5642 0.3182 0.3918 0.4358 0.5035 2
21 0.3509 0.5957 0.3507 0.4079 0.5432 0.3107 3
22 0.3661 0.5915 0.3361 0.4137 0.4808 0.2884 3
23 0.3717 0.5968 0.3237 0.4003 0.4708 0.3376 3
24 0.3589 0.5903 0.323 0.3931 0.4377 0.3266 3
25 0.3436 0.5775 0.3298 0.3907 0.4888 0.3454 3
26 0.3159 0.5158 0.3214 0.3981 0.5433 0.3301 3
27 0.3354 0.5356 0.3373 0.4095 0.5594 0.3677 3
28 0.3231 0.5202 0.3197 0.3899 0.5466 0.3510 3
29 0.3534 0.5655 0.3275 0.4129 0.5210 0.3302 3
30 0.3761 0.5795 0.3399 0.4324 0.5290 0.3305 3
31 0.3723 0.5821 0.2097 0.3695 0.3453 0.3765 4
32 0.3836 0.6022 0.3054 0.3861 0.3383 0.3429 4
33 0.3716 0.5918 0.3101 0.3761 0.3595 0.3248 4
34 0.4115 0.6037 0.2797 0.4036 0.3987 0.3294 4
35 0.4321 0.6446 0.3090 0.4157 0.4254 0.3284 4
36 0.3765 0.608 0.3098 0.3842 0.3198 0.3587 4
37 0.3987 0.6132 0.3145 0.3954 0.3272 0.3829 4
38 0.3840 0.5953 0.3123 0.3920 0.3165 0.4022 4
39 0.3854 0.6023 0.3101 0.3890 0.3154 0.3635 4
40 0.3873 0.5970 0.3074 0.3944 0.3554 0.3735 4
41 0.4000 0.4976 0.3254 0.3969 0.5242 0.4233 5
42 0.2626 0.3115 0.2417 0.2633 0.4584 0.3841 5
43 0.2657 0.3276 0.2263 0.2723 0.3681 0.4321 5
44 0.3640 0.4823 0.3034 0.3518 0.5274 0.6200 5
45 0.4051 0.5158 0.3361 0.4082 0.6228 0.6095 5
46 0.3592 0.4453 0.3003 0.3543 0.4673 0.4100 5
47 0.4049 0.4874 0.3207 0.3977 0.5187 0.4240 5
48 0.3586 0.4805 0.3102 0.3614 0.4967 0.8066 5
49 0.3049 0.3866 0.2726 0.3215 0.4967 0.5492 5
50 0.4029 0.5257 0.3363 0.4028 0.5465 0.4661 5

*Fabric defects 1-normal, 2-neps, 3-broken threads, 4-broken picks, 5-oil strains

each training vector [7-16], thus the time
required for training using the training
data set (data set for which the output
class is known) is less [7-9] compared to
other classifiers. The PNN training algo-
rithm is a deterministic process, whereas
the training algorithm of other classifiers

involves a convergence process (where
the number of iteration cannot be deter-
mined prior to execution). In a second
application, a FPGA based hardware sys-
tem is designed for possible implementa-
tion of the PNN classifier for identifying
fabric defects.

45FIBRES & TEXTILES in Eastern Europe 2017, Vol. 25, 1(121)

The function of each layer of the PNN is
discussed below.

The input layer contains m nodes (in this
study m = 6) for each of the input features
of the vector, x = {f1, f2,..., f6}. These are
fan-out nodes that branch at each feature
input node to all nodes in the hidden lay-
er, so that each hidden node receives the
complete input feature vectors.

The hidden layer contains one neuron
for each vector in the training data set. It
stores the values of the predictor variables
for the vector along with the target value.
A hidden neuron computes the Euclidean
distance of the test case from the neuron’s
center point (that is the stored vector,
x(P)) and then maps it to the Radial Basis
Function (RBF), as given in Equation 2:

 

 Five different categories, i.e., one for normal and the rest for four fabric defects, are

classified using the PNN. The training data set along with its known class is used to train

the PNN, and the test data set is used for cross validation.

 Figure 3 shows a block diagram of the PNN classification system. When an input is

presented, the hidden layer computes the distance from the input vector to the training

input vectors. This produces a vector whose elements indicate how close the input is to the

training inputs. The summation layer sums the contribution for each class of inputs and

produces its net output as a vector of probabilities. Finally a compete transfer function for

the output of the summation layer picks the maximum of these probabilities and indicates

a particular class as the output. The function of each layer of the PNN is discussed below.

The input layer contains m nodes (in this study m = 6) for each of the input features of

the vector, },..,,{ 621 fffx .These are fan-out nodes that branch at each feature input node

to all nodes in the hidden layer, so that each hidden node receives the complete input

feature vectors.

The hidden layer contains one neuron for each vector in the training data set. It stores

the values of the predictor variables for the vector along with the target value. A hidden

neuron computes the Euclidean distance of the test case from the neuron’s center point

(that is the stored vector, 𝑥𝑥 𝑃𝑃) and then maps it to the Radial Basis Function (RBF), as

given in Equation 2:

 𝑓𝑓 𝑥𝑥 = 1
 2𝜋𝜋𝜋𝜋2 𝑚𝑚 𝑒𝑒

−1
 2
 𝑥𝑥−𝑥𝑥 𝑃𝑃

𝜋𝜋
2

 (2)

The σ value can be taken to be one-half the average distance between the feature vectors in

the same group, or at each exemplar it can be one-half the distance from the exemplar to

its nearest other exemplar vector.

 (2)

The σ value can be taken to be one-half
the average distance between the feature
vectors in the same group, or at each ex-
emplar it can be one-half the distance
from the exemplar to its nearest other ex-
emplar vector.

The summation layer neurons compute
the maximum likelihood of the pattern, x
being classified into class cj; j = 1, 2,... 5,
by summarising and averaging the output
of all neurons that belong to the same
class. The actual target category of each
training case is stored with each hidden
neuron; all the weighted values coming
out from the hidden neurons (of a specific
class) are fed only to the summation neu-
ron that corresponds to the hidden neu-
ron’s category. The jth summation node
sums up the values received from the kth
group of hidden nodes using Equation 3:

 The summation layer neurons compute the maximum likelihood of the pattern, x being

classified into class ,5...,2,1; jc j by summarising and averaging the output of all

neurons that belong to the same class. The actual target category of each training case is

stored with each hidden neuron; all the weighted values coming out from the hidden

neurons (of a specific class) are fed only to the summation neuron that corresponds to the

hidden neuron’s category. The jth summation node sums up the values received from the kth

group of hidden nodes using Equation 3:

𝑝𝑝𝑗𝑗 𝑥𝑥 = 1
 2𝜋𝜋𝜋𝜋2 𝑚𝑚

1
𝑁𝑁 𝑒𝑒

−1
 2

 𝑥𝑥−𝑥𝑥𝑖𝑖
(𝑃𝑃)
𝜋𝜋

2

𝑁𝑁
𝑖𝑖=1 (3)

Where N = number of hidden nodes for a particular class, 𝑥𝑥𝑖𝑖
(𝑃𝑃) denotes the vector stored in

a hidden node 𝑖𝑖.

 The output layer classifies the pattern, x , in accordance with Bayes’s decision rule

based on the output of all the summation layer neurons as follows:

)}({maxarg)(ˆ
5

1
xpjc jj

 (4)

Hence the output layer compares the weighted votes for each of the five pattern nodes of

the pattern layer, uses the largest vote to predict the target category, and thereby

recognizes the test vector in the jth class.

 The features of fabric defects extracted from the captured image and associated type of

defects are initially used to train the five class PNN classifier and thereafter the trained

PNN is used for test dataset classification. The performance of the PNN classifier is cross

validated using k-fold cross validation.

(3)

Where N = number of hidden nodes for
a particular class, xi

(P) denotes the vector
stored in a hidden node.

The output layer classifies the pattern, x,
in accordance with Bayes’s decision rule
based on the output of all the summation
layer neurons as follows:

 The summation layer neurons compute the maximum likelihood of the pattern, x being

classified into class ,5...,2,1; jc j by summarising and averaging the output of all

neurons that belong to the same class. The actual target category of each training case is

stored with each hidden neuron; all the weighted values coming out from the hidden

neurons (of a specific class) are fed only to the summation neuron that corresponds to the

hidden neuron’s category. The jth summation node sums up the values received from the kth

group of hidden nodes using Equation 3:

𝑝𝑝𝑗𝑗 𝑥𝑥 = 1
 2𝜋𝜋𝜋𝜋2 𝑚𝑚

1
𝑁𝑁 𝑒𝑒

−1
 2

 𝑥𝑥−𝑥𝑥𝑖𝑖
(𝑃𝑃)
𝜋𝜋

2

𝑁𝑁
𝑖𝑖=1 (3)

Where N = number of hidden nodes for a particular class, 𝑥𝑥𝑖𝑖
(𝑃𝑃) denotes the vector stored in

a hidden node 𝑖𝑖.

 The output layer classifies the pattern, x , in accordance with Bayes’s decision rule

based on the output of all the summation layer neurons as follows:

)}({maxarg)(ˆ
5

1
xpjc jj

 (4)

Hence the output layer compares the weighted votes for each of the five pattern nodes of

the pattern layer, uses the largest vote to predict the target category, and thereby

recognizes the test vector in the jth class.

 The features of fabric defects extracted from the captured image and associated type of

defects are initially used to train the five class PNN classifier and thereafter the trained

PNN is used for test dataset classification. The performance of the PNN classifier is cross

validated using k-fold cross validation.

   (4)

Hence the output layer compares the
weighted votes for each of the five pat-

Figure 4. System architecture of system proposed.

tern nodes of the pattern layer, uses the
largest vote to predict the target category,
and thereby recognizes the test vector in
the jth class.

The features of fabric defects extracted
from the captured image and associated
type of defects are initially used to train
the five class PNN classifier and thereaf-
ter the trained PNN is used for test data-
set classification. The performance of the
PNN classifier is cross validated using
k-fold cross validation.

 FPGA implementation of PNN
classifier

The system architecture for classification
proposed is shown in Figure 4, which
has a pipelined architecture and consists
of 5 class modules of 6 inputs of 23 bits
and a comparator which has 1 output of 3
bits. From the output we can identify the
type of defect corresponding to the input
values.

Class modules
Allclass modules take a test vector
x = {x1, x2, x3, x4, x5, x6} of six features,
each of 23 bits as inputs. It computes the
probability of belonging to the each class
of the test vector and its computed value
is forwarded to the comparator module.
The probability value is computed using
Equation 2. Each of the class modules
is comprised of 8 vector modules, one
summation module and one multiplier
module. The vector modules correspond-
ing to each class perform the function of
the hidden node in the hidden layer of the
PNN. Figure 5 (see page 46) shows the
internal architecture of a class module.

Vector modules
Inside every class module there are 8
vector modules which store a training
vector of 6 features, each of 23 bits. Each
vector module calculates the exponent

expression

FPGA IMPLEMENTATION OF PNN CLASSIFIER

The system architecture for classification proposed is shown in Figure 4, which has a

pipelined architecture and consists of 5 class modules of 6 inputs of 23 bits and a

comparator which has 1 output of 3 bits. From the output we can identify the type of defect

corresponding to the input values.

Class Modules

Allclass modules take a test vector },,,,,{ 654321 xxxxxxx of six features, each of 23 bits

as inputs. It computes the probability of belonging to the each class of the test vector and

its computed value is forwarded to the comparator module. The probability value is

computed using Equation 2. Each of the class modules is comprised of 8 vector modules,

one summation module and one multiplier module. The vector modules corresponding to

each class perform the function of the hidden node in the hidden layer of the PNN. Figure

5 shows the internal architecture of a class module.

Vector Modules

 Inside every class module there are 8 vector modules which store a training vector of 6

features, each of 23 bits. Each vector module calculates the exponent

expression𝑒𝑒
1
 2

 𝑥𝑥𝑥𝑥𝑥 𝑃𝑃
𝜎𝜎

2

of Equation 2 and forwards the value to the summation module,

which acts as the summation layer of the PNN. Each vector module again consists of a

Euclidean distance calculator module, one multiplier unit and one exponent calculation

unit. Figure 6 shows the internal architecture of each vector module.

Euclidean distance unit in the vector module

 of Equation 2 and

forwards the value to the summation mod-

FIBRES & TEXTILES in Eastern Europe 2017, Vol. 25, 1(121)46

Figure 5. Internal architecture of class module.

Figure 6. Internal architecture of vector module.

calculates the square of the Euclide-
an distance between the training vector
x = {x1, x2, ... x6} and test vector using the
equation given below:

 One Euclidean distance unit exists in each of the vector modules, which stores the

training vector 𝑥𝑥 𝑝𝑝 = 𝑥𝑥1
𝑝𝑝 , 𝑥𝑥2

𝑝𝑝 ,… , 𝑥𝑥6
𝑝𝑝 , and upon receiving the test vector 𝑥𝑥 =

 𝑥𝑥1, 𝑥𝑥2,… , 𝑥𝑥6 , it calculates the square of the Euclidean distance between the training

vector and test vector using the equation given below:

𝑒𝑒𝑒𝑒 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
 𝑃𝑃

2𝑛𝑛
𝑖𝑖=1 (5)

The Euclidean distance calculation unit consists of 6 subtraction sub-units and 6 square

sub-units. The architecture of the Euclidean distance calculation unit is shown in Figure 7.

Each of the subtractor sub-units stores one attribute (as 23 bit binary value) of the

training vector and computes the absolute distance between the respective feature value of

the test vector and forwards the result to the corresponding multiplier. The square sub-unit

in the Euclidean distance calculation unit simply squares the input and forwards the result

to the summation module, which sums up the 6 inputs and its output ed is forwarded to

the outer multiplier unit.

Multiplier unit in the vector module

The multiplier unit in the vector module is used to multiply the constant value with the

output value of the Euclidian distance unit. In this present work 10.0 and
22

1

is

multiplied with ed as:

22
1

 edednew (6)

This calculated value is forwarded to the exponent unit for further calculation.

Exponent unit in the vector module

A Taylor series expansion of the exponent is given as:

   (5)

The Euclidean distance calculation unit
consists of 6 subtraction sub-units and
6 square sub-units. The architecture of
the Euclidean distance calculation unit
is shown in Figure 7. Each of the sub-
tractor sub-units stores one attribute (as
23 bit binary value) of the training vec-
tor and computes the absolute distance
between the respective feature value of
the test vector and forwards the result to
the corresponding multiplier. The square
sub-unit in the Euclidean distance calcu-
lation unit simply squares the input and
forwards the result to the summation
module, which sums up the 6 inputs and
its output ed is forwarded to the outer
multiplier unit.

Multiplier unit in the vector module
The multiplier unit in the vector module
is used to multiply the constant value with
the output value of the Euclidian distance
unit. In this present work

 One Euclidean distance unit exists in each of the vector modules, which stores the

training vector 𝑥𝑥 𝑝𝑝 = 𝑥𝑥1
𝑝𝑝 , 𝑥𝑥2

𝑝𝑝 ,… , 𝑥𝑥6
𝑝𝑝 , and upon receiving the test vector 𝑥𝑥 =

 𝑥𝑥1, 𝑥𝑥2,… , 𝑥𝑥6 , it calculates the square of the Euclidean distance between the training

vector and test vector using the equation given below:

𝑒𝑒𝑒𝑒 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
 𝑃𝑃

2𝑛𝑛
𝑖𝑖=1 (5)

The Euclidean distance calculation unit consists of 6 subtraction sub-units and 6 square

sub-units. The architecture of the Euclidean distance calculation unit is shown in Figure 7.

Each of the subtractor sub-units stores one attribute (as 23 bit binary value) of the

training vector and computes the absolute distance between the respective feature value of

the test vector and forwards the result to the corresponding multiplier. The square sub-unit

in the Euclidean distance calculation unit simply squares the input and forwards the result

to the summation module, which sums up the 6 inputs and its output ed is forwarded to

the outer multiplier unit.

Multiplier unit in the vector module

The multiplier unit in the vector module is used to multiply the constant value with the

output value of the Euclidian distance unit. In this present work 10.0 and
22

1

is

multiplied with ed as:

22
1

 edednew (6)

This calculated value is forwarded to the exponent unit for further calculation.

Exponent unit in the vector module

A Taylor series expansion of the exponent is given as:

 = 0,10 and

 One Euclidean distance unit exists in each of the vector modules, which stores the

training vector 𝑥𝑥 𝑝𝑝 = 𝑥𝑥1
𝑝𝑝 , 𝑥𝑥2

𝑝𝑝 ,… , 𝑥𝑥6
𝑝𝑝 , and upon receiving the test vector 𝑥𝑥 =

 𝑥𝑥1, 𝑥𝑥2,… , 𝑥𝑥6 , it calculates the square of the Euclidean distance between the training

vector and test vector using the equation given below:

𝑒𝑒𝑒𝑒 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
 𝑃𝑃

2𝑛𝑛
𝑖𝑖=1 (5)

The Euclidean distance calculation unit consists of 6 subtraction sub-units and 6 square

sub-units. The architecture of the Euclidean distance calculation unit is shown in Figure 7.

Each of the subtractor sub-units stores one attribute (as 23 bit binary value) of the

training vector and computes the absolute distance between the respective feature value of

the test vector and forwards the result to the corresponding multiplier. The square sub-unit

in the Euclidean distance calculation unit simply squares the input and forwards the result

to the summation module, which sums up the 6 inputs and its output ed is forwarded to

the outer multiplier unit.

Multiplier unit in the vector module

The multiplier unit in the vector module is used to multiply the constant value with the

output value of the Euclidian distance unit. In this present work 10.0 and
22

1

is

multiplied with ed as:

22
1

 edednew (6)

This calculated value is forwarded to the exponent unit for further calculation.

Exponent unit in the vector module

A Taylor series expansion of the exponent is given as:

 is multiplied with ed as:

 One Euclidean distance unit exists in each of the vector modules, which stores the

training vector 𝑥𝑥 𝑝𝑝 = 𝑥𝑥1
𝑝𝑝 , 𝑥𝑥2

𝑝𝑝 ,… , 𝑥𝑥6
𝑝𝑝 , and upon receiving the test vector 𝑥𝑥 =

 𝑥𝑥1, 𝑥𝑥2,… , 𝑥𝑥6 , it calculates the square of the Euclidean distance between the training

vector and test vector using the equation given below:

𝑒𝑒𝑒𝑒 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
 𝑃𝑃

2𝑛𝑛
𝑖𝑖=1 (5)

The Euclidean distance calculation unit consists of 6 subtraction sub-units and 6 square

sub-units. The architecture of the Euclidean distance calculation unit is shown in Figure 7.

Each of the subtractor sub-units stores one attribute (as 23 bit binary value) of the

training vector and computes the absolute distance between the respective feature value of

the test vector and forwards the result to the corresponding multiplier. The square sub-unit

in the Euclidean distance calculation unit simply squares the input and forwards the result

to the summation module, which sums up the 6 inputs and its output ed is forwarded to

the outer multiplier unit.

Multiplier unit in the vector module

The multiplier unit in the vector module is used to multiply the constant value with the

output value of the Euclidian distance unit. In this present work 10.0 and
22

1

is

multiplied with ed as:

22
1

 edednew (6)

This calculated value is forwarded to the exponent unit for further calculation.

Exponent unit in the vector module

A Taylor series expansion of the exponent is given as:

    (6)

This calculated value is forwarded to the
exponent unit for further calculation.

Exponent unit in the vector module
A Taylor series expansion of the expo-
nent is given as:

xe = x1
!2

2x
!3

3x … up to ∞ (7)

The present work takes into consideration up to the 10thpower of x values. As
!2

1 ,
!3

1 ,…,
!10

1

are constants, these values are stored in a look-up table. The system architecture proposed

is shown in Figure 8, which has a pipelined architecture and consists of 18 multipliers as

well as 10 adders for exponent calculation to achieve 21-bit accuracy.

 All the inputs in each and every block are taken in 23 bits as well as all block forward

outputs. The exponent unit takes newed as the input and calculates the value of newede . Table

2 shows the output of the calculated exponent value using the exponent block proposed.

Summation Module

The summation module calculates the sum of all the vector modules to estimate the

fitness of a test vector to a specific class using the following Equation:

N

i

ed
i

neweS
1

 (8)

where newed
ie is the calculated exponent value of the ith vector module of a specific class

module.

Multiplier unit in class module

The multiplier unit in the class module stores the value of constant 1
 2𝜋𝜋𝜋𝜋2 𝑚𝑚

1
𝑁𝑁as a binary

number and finally multiples this constant value (N=8, m=6, 10.0) with the output of

the summation module as given in Equation 9.

... up to ∞   (7)

The present work takes into considera-
tion up to the 10th power of x values. As

xe = x1
!2

2x
!3

3x … up to ∞ (7)

The present work takes into consideration up to the 10thpower of x values. As
!2

1 ,
!3

1 ,…,
!10

1

are constants, these values are stored in a look-up table. The system architecture proposed

is shown in Figure 8, which has a pipelined architecture and consists of 18 multipliers as

well as 10 adders for exponent calculation to achieve 21-bit accuracy.

 All the inputs in each and every block are taken in 23 bits as well as all block forward

outputs. The exponent unit takes newed as the input and calculates the value of newede . Table

2 shows the output of the calculated exponent value using the exponent block proposed.

Summation Module

The summation module calculates the sum of all the vector modules to estimate the

fitness of a test vector to a specific class using the following Equation:

N

i

ed
i

neweS
1

 (8)

where newed
ie is the calculated exponent value of the ith vector module of a specific class

module.

Multiplier unit in class module

The multiplier unit in the class module stores the value of constant 1
 2𝜋𝜋𝜋𝜋2 𝑚𝑚

1
𝑁𝑁as a binary

number and finally multiples this constant value (N=8, m=6, 10.0) with the output of

the summation module as given in Equation 9.

 are constants, these values

are stored in a look-up table. The system
architecture proposed is shown in Fig-
ure 8, which has a pipelined architecture
and consists of 18 multipliers as well as
10 adders for exponent calculation to
achieve 21-bit accuracy.

All the inputs in each and every block
are taken in 23 bits as well as all block
forward outputs. The exponent unit takes
eednew as the input and calculates the value
of eednew. Table 2 shows the output of the
calculated exponent value using the ex-
ponent block proposed.

ule, which acts as the summation layer of
the PNN. Each vector module again con-
sists of a Euclidean distance calculator
module, one multiplier unit and one expo-
nent calculation unit. Figure 6 shows the
internal architecture of each vector module.

Euclidean distance unit in the vector
module
One Euclidean distance unit exists in each
of the vector modules, which stores the
training vector

 One Euclidean distance unit exists in each of the vector modules, which stores the

training vector 𝑥𝑥 𝑝𝑝 = 𝑥𝑥1
𝑝𝑝 , 𝑥𝑥2

𝑝𝑝 ,… , 𝑥𝑥6
𝑝𝑝 , and upon receiving the test vector 𝑥𝑥 =

 𝑥𝑥1, 𝑥𝑥2,… , 𝑥𝑥6 , it calculates the square of the Euclidean distance between the training

vector and test vector using the equation given below:

𝑒𝑒𝑒𝑒 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
 𝑃𝑃

2𝑛𝑛
𝑖𝑖=1 (5)

The Euclidean distance calculation unit consists of 6 subtraction sub-units and 6 square

sub-units. The architecture of the Euclidean distance calculation unit is shown in Figure 7.

Each of the subtractor sub-units stores one attribute (as 23 bit binary value) of the

training vector and computes the absolute distance between the respective feature value of

the test vector and forwards the result to the corresponding multiplier. The square sub-unit

in the Euclidean distance calculation unit simply squares the input and forwards the result

to the summation module, which sums up the 6 inputs and its output ed is forwarded to

the outer multiplier unit.

Multiplier unit in the vector module

The multiplier unit in the vector module is used to multiply the constant value with the

output value of the Euclidian distance unit. In this present work 10.0 and
22

1

is

multiplied with ed as:

22
1

 edednew (6)

This calculated value is forwarded to the exponent unit for further calculation.

Exponent unit in the vector module

A Taylor series expansion of the exponent is given as:

,
and upon receiving the test vector , it

47FIBRES & TEXTILES in Eastern Europe 2017, Vol. 25, 1(121)

Table 2. Sample outputs of exponent block.

SL x (Float) x(23 bit) ex (Actual) ex (Computed 23 bit value)
1 0.45999991893768 01110101110000101000111 1.584073857 1.1001010110000101110111
2 0.789999996185303 11001010001111010111000 2.203396342 10.001101000001000111001
3 0.98999989032745 11111101011100001010001 2.691234177 10.101100001111010010111
4 0.65809988975525 10101000011110010011110 1.9311197 1.1110111001011101110111
5 0.25959992408752 01000010011101010010010 1.2964114 1.0100101111100001100111

Summation module
The summation module calculates the
sum of all the vector modules to estimate
the fitness of a test vector to a specific
class using the following Equation (8):

xe = x1
!2

2x
!3

3x … up to ∞ (7)

The present work takes into consideration up to the 10thpower of x values. As
!2

1 ,
!3

1 ,…,
!10

1

are constants, these values are stored in a look-up table. The system architecture proposed

is shown in Figure 8, which has a pipelined architecture and consists of 18 multipliers as

well as 10 adders for exponent calculation to achieve 21-bit accuracy.

 All the inputs in each and every block are taken in 23 bits as well as all block forward

outputs. The exponent unit takes newed as the input and calculates the value of newede . Table

2 shows the output of the calculated exponent value using the exponent block proposed.

Summation Module

The summation module calculates the sum of all the vector modules to estimate the

fitness of a test vector to a specific class using the following Equation:

N

i

ed
i

neweS
1

 (8)

where newed
ie is the calculated exponent value of the ith vector module of a specific class

module.

Multiplier unit in class module

The multiplier unit in the class module stores the value of constant 1
 2𝜋𝜋𝜋𝜋2 𝑚𝑚

1
𝑁𝑁as a binary

number and finally multiples this constant value (N=8, m=6, 10.0) with the output of

the summation module as given in Equation 9.

      (8)

where

xe = x1
!2

2x
!3

3x … up to ∞ (7)

The present work takes into consideration up to the 10thpower of x values. As
!2

1 ,
!3

1 ,…,
!10

1

are constants, these values are stored in a look-up table. The system architecture proposed

is shown in Figure 8, which has a pipelined architecture and consists of 18 multipliers as

well as 10 adders for exponent calculation to achieve 21-bit accuracy.

 All the inputs in each and every block are taken in 23 bits as well as all block forward

outputs. The exponent unit takes newed as the input and calculates the value of newede . Table

2 shows the output of the calculated exponent value using the exponent block proposed.

Summation Module

The summation module calculates the sum of all the vector modules to estimate the

fitness of a test vector to a specific class using the following Equation:

N

i

ed
i

neweS
1

 (8)

where newed
ie is the calculated exponent value of the ith vector module of a specific class

module.

Multiplier unit in class module

The multiplier unit in the class module stores the value of constant 1
 2𝜋𝜋𝜋𝜋2 𝑚𝑚

1
𝑁𝑁as a binary

number and finally multiples this constant value (N=8, m=6, 10.0) with the output of

the summation module as given in Equation 9.

 is the calculated exponent
value of the ith vector module of a specif-
ic class module.

Multiplier unit in class module
The multiplier unit in the class module

stores the value of constant

xe = x1
!2

2x
!3

3x … up to ∞ (7)

The present work takes into consideration up to the 10thpower of x values. As
!2

1 ,
!3

1 ,…,
!10

1

are constants, these values are stored in a look-up table. The system architecture proposed

is shown in Figure 8, which has a pipelined architecture and consists of 18 multipliers as

well as 10 adders for exponent calculation to achieve 21-bit accuracy.

 All the inputs in each and every block are taken in 23 bits as well as all block forward

outputs. The exponent unit takes newed as the input and calculates the value of newede . Table

2 shows the output of the calculated exponent value using the exponent block proposed.

Summation Module

The summation module calculates the sum of all the vector modules to estimate the

fitness of a test vector to a specific class using the following Equation:

N

i

ed
i

neweS
1

 (8)

where newed
ie is the calculated exponent value of the ith vector module of a specific class

module.

Multiplier unit in class module

The multiplier unit in the class module stores the value of constant 1
 2𝜋𝜋𝜋𝜋2 𝑚𝑚

1
𝑁𝑁as a binary

number and finally multiples this constant value (N=8, m=6, 10.0) with the output of

the summation module as given in Equation 9.

as a binary number and finally multi-
ples this constant value (N = 8, m = 6,

xe = x1
!2

2x
!3

3x … up to ∞ (7)

The present work takes into consideration up to the 10thpower of x values. As
!2

1 ,
!3

1 ,…,
!10

1

are constants, these values are stored in a look-up table. The system architecture proposed

is shown in Figure 8, which has a pipelined architecture and consists of 18 multipliers as

well as 10 adders for exponent calculation to achieve 21-bit accuracy.

 All the inputs in each and every block are taken in 23 bits as well as all block forward

outputs. The exponent unit takes newed as the input and calculates the value of newede . Table

2 shows the output of the calculated exponent value using the exponent block proposed.

Summation Module

The summation module calculates the sum of all the vector modules to estimate the

fitness of a test vector to a specific class using the following Equation:

N

i

ed
i

neweS
1

 (8)

where newed
ie is the calculated exponent value of the ith vector module of a specific class

module.

Multiplier unit in class module

The multiplier unit in the class module stores the value of constant 1
 2𝜋𝜋𝜋𝜋2 𝑚𝑚

1
𝑁𝑁as a binary

number and finally multiples this constant value (N=8, m=6, 10.0) with the output of

the summation module as given in Equation 9.

 = 0.10) with the output of the sum-
mation module as given in Equation 9.

 𝐹𝐹 = 1
 2𝜋𝜋𝜋𝜋2 𝑚𝑚

1
𝑁𝑁 × 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛 (9)

Comparator module

The comparator takes six 23 bit values as 6 inputs and finds the minimum value

among them, because in the FPGA implementation the exponent unit calculates the

exponent expression 𝑒𝑒
1
 2

 𝑥𝑥𝑥𝑥𝑥 𝑃𝑃
𝜋𝜋

2

instead of 𝑒𝑒
𝑥 1

 2
 𝑥𝑥𝑥𝑥𝑥 𝑃𝑃

𝜋𝜋
2

 to avoid reciprocal calculation;

because it is known from the duality principle that finding the maximum value from a set

𝐴𝐴 = { 1
𝑎𝑎1

, 1
𝑎𝑎2

, . . 1
𝑎𝑎𝑛𝑛

} is equivalent to finding the minimum reciprocal of each element of that

set, i.e., 𝐴𝐴′ = {𝑎𝑎1,𝑎𝑎2, . .𝑎𝑎𝑛𝑛}.This module generates a 3 bit output as a result. Table 3 shows

the output value and its interpretation regarding the type of fabric defect.

RESULTS AND DISCUSSION

In the software based approach, the dataset is divided into training and testing data sets

using the k-fold cross validation technique to make the validation of the model more

general and unbiased. The performance accuracy of the PNN based software approach is

assessed using the 5-fold cross validation technique. One fold is used as a test dataset at a

time, while the system was trained using other four folds. In this way training and testing

were done for 5 times. The generalized accuracies referring to the testing are estimated as

the average accuracy±standard deviation (σ) of five cycles for the test set. The value of σ is

tuned to be 0.1. The accuracies of testing are found to be 98 ± 2%.

In the FPGA based system, the same dataset is applied in a similar approach as

described above. Initially each class module stores 8 training vectors for the respective

class in the system. One test vector is given as the input to the FPGA based system, which

predicts its class. For performance assessment of the system proposed, we stored the

   (9)

Comparator module
The comparator takes six 23 bit values
as 6 inputs and finds the minimum value
among them, because in the FPGA im-
plementation the exponent unit calculates

the exponent expression

 𝐹𝐹 = 1
 2𝜋𝜋𝜋𝜋2 𝑚𝑚

1
𝑁𝑁 × 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛 (9)

Comparator module

The comparator takes six 23 bit values as 6 inputs and finds the minimum value

among them, because in the FPGA implementation the exponent unit calculates the

exponent expression 𝑒𝑒
1
 2

 𝑥𝑥𝑥𝑥𝑥 𝑃𝑃
𝜋𝜋

2

instead of 𝑒𝑒
𝑥 1

 2
 𝑥𝑥𝑥𝑥𝑥 𝑃𝑃

𝜋𝜋
2

 to avoid reciprocal calculation;

because it is known from the duality principle that finding the maximum value from a set

𝐴𝐴 = { 1
𝑎𝑎1

, 1
𝑎𝑎2

, . . 1
𝑎𝑎𝑛𝑛

} is equivalent to finding the minimum reciprocal of each element of that

set, i.e., 𝐴𝐴′ = {𝑎𝑎1,𝑎𝑎2, . .𝑎𝑎𝑛𝑛}.This module generates a 3 bit output as a result. Table 3 shows

the output value and its interpretation regarding the type of fabric defect.

RESULTS AND DISCUSSION

In the software based approach, the dataset is divided into training and testing data sets

using the k-fold cross validation technique to make the validation of the model more

general and unbiased. The performance accuracy of the PNN based software approach is

assessed using the 5-fold cross validation technique. One fold is used as a test dataset at a

time, while the system was trained using other four folds. In this way training and testing

were done for 5 times. The generalized accuracies referring to the testing are estimated as

the average accuracy±standard deviation (σ) of five cycles for the test set. The value of σ is

tuned to be 0.1. The accuracies of testing are found to be 98 ± 2%.

In the FPGA based system, the same dataset is applied in a similar approach as

described above. Initially each class module stores 8 training vectors for the respective

class in the system. One test vector is given as the input to the FPGA based system, which

predicts its class. For performance assessment of the system proposed, we stored the

instead of

 𝐹𝐹 = 1
 2𝜋𝜋𝜋𝜋2 𝑚𝑚

1
𝑁𝑁 × 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛 (9)

Comparator module

The comparator takes six 23 bit values as 6 inputs and finds the minimum value

among them, because in the FPGA implementation the exponent unit calculates the

exponent expression 𝑒𝑒
1
 2

 𝑥𝑥𝑥𝑥𝑥 𝑃𝑃
𝜋𝜋

2

instead of 𝑒𝑒
𝑥 1

 2
 𝑥𝑥𝑥𝑥𝑥 𝑃𝑃

𝜋𝜋
2

 to avoid reciprocal calculation;

because it is known from the duality principle that finding the maximum value from a set

𝐴𝐴 = { 1
𝑎𝑎1

, 1
𝑎𝑎2

, . . 1
𝑎𝑎𝑛𝑛

} is equivalent to finding the minimum reciprocal of each element of that

set, i.e., 𝐴𝐴′ = {𝑎𝑎1,𝑎𝑎2, . .𝑎𝑎𝑛𝑛}.This module generates a 3 bit output as a result. Table 3 shows

the output value and its interpretation regarding the type of fabric defect.

RESULTS AND DISCUSSION

In the software based approach, the dataset is divided into training and testing data sets

using the k-fold cross validation technique to make the validation of the model more

general and unbiased. The performance accuracy of the PNN based software approach is

assessed using the 5-fold cross validation technique. One fold is used as a test dataset at a

time, while the system was trained using other four folds. In this way training and testing

were done for 5 times. The generalized accuracies referring to the testing are estimated as

the average accuracy±standard deviation (σ) of five cycles for the test set. The value of σ is

tuned to be 0.1. The accuracies of testing are found to be 98 ± 2%.

In the FPGA based system, the same dataset is applied in a similar approach as

described above. Initially each class module stores 8 training vectors for the respective

class in the system. One test vector is given as the input to the FPGA based system, which

predicts its class. For performance assessment of the system proposed, we stored the

 to avoid
reciprocal calculation; because it is
known from the duality principle that
finding the maximum value from a set

 𝐹𝐹 = 1
 2𝜋𝜋𝜋𝜋2 𝑚𝑚

1
𝑁𝑁 × 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛 (9)

Comparator module

The comparator takes six 23 bit values as 6 inputs and finds the minimum value

among them, because in the FPGA implementation the exponent unit calculates the

exponent expression 𝑒𝑒
1
 2

 𝑥𝑥𝑥𝑥𝑥 𝑃𝑃
𝜋𝜋

2

instead of 𝑒𝑒
𝑥 1

 2
 𝑥𝑥𝑥𝑥𝑥 𝑃𝑃

𝜋𝜋
2

 to avoid reciprocal calculation;

because it is known from the duality principle that finding the maximum value from a set

𝐴𝐴 = { 1
𝑎𝑎1

, 1
𝑎𝑎2

, . . 1
𝑎𝑎𝑛𝑛

} is equivalent to finding the minimum reciprocal of each element of that

set, i.e., 𝐴𝐴′ = {𝑎𝑎1,𝑎𝑎2, . .𝑎𝑎𝑛𝑛}.This module generates a 3 bit output as a result. Table 3 shows

the output value and its interpretation regarding the type of fabric defect.

RESULTS AND DISCUSSION

In the software based approach, the dataset is divided into training and testing data sets

using the k-fold cross validation technique to make the validation of the model more

general and unbiased. The performance accuracy of the PNN based software approach is

assessed using the 5-fold cross validation technique. One fold is used as a test dataset at a

time, while the system was trained using other four folds. In this way training and testing

were done for 5 times. The generalized accuracies referring to the testing are estimated as

the average accuracy±standard deviation (σ) of five cycles for the test set. The value of σ is

tuned to be 0.1. The accuracies of testing are found to be 98 ± 2%.

In the FPGA based system, the same dataset is applied in a similar approach as

described above. Initially each class module stores 8 training vectors for the respective

class in the system. One test vector is given as the input to the FPGA based system, which

predicts its class. For performance assessment of the system proposed, we stored the

 is equivalent to find-

ing the minimum reciprocal of each ele-
ment of that set, i.e.,

 𝐹𝐹 = 1
 2𝜋𝜋𝜋𝜋2 𝑚𝑚

1
𝑁𝑁 × 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛 (9)

Comparator module

The comparator takes six 23 bit values as 6 inputs and finds the minimum value

among them, because in the FPGA implementation the exponent unit calculates the

exponent expression 𝑒𝑒
1
 2

 𝑥𝑥𝑥𝑥𝑥 𝑃𝑃
𝜋𝜋

2

instead of 𝑒𝑒
𝑥 1

 2
 𝑥𝑥𝑥𝑥𝑥 𝑃𝑃

𝜋𝜋
2

 to avoid reciprocal calculation;

because it is known from the duality principle that finding the maximum value from a set

𝐴𝐴 = { 1
𝑎𝑎1

, 1
𝑎𝑎2

, . . 1
𝑎𝑎𝑛𝑛

} is equivalent to finding the minimum reciprocal of each element of that

set, i.e., 𝐴𝐴′ = {𝑎𝑎1,𝑎𝑎2, . .𝑎𝑎𝑛𝑛}.This module generates a 3 bit output as a result. Table 3 shows

the output value and its interpretation regarding the type of fabric defect.

RESULTS AND DISCUSSION

In the software based approach, the dataset is divided into training and testing data sets

using the k-fold cross validation technique to make the validation of the model more

general and unbiased. The performance accuracy of the PNN based software approach is

assessed using the 5-fold cross validation technique. One fold is used as a test dataset at a

time, while the system was trained using other four folds. In this way training and testing

were done for 5 times. The generalized accuracies referring to the testing are estimated as

the average accuracy±standard deviation (σ) of five cycles for the test set. The value of σ is

tuned to be 0.1. The accuracies of testing are found to be 98 ± 2%.

In the FPGA based system, the same dataset is applied in a similar approach as

described above. Initially each class module stores 8 training vectors for the respective

class in the system. One test vector is given as the input to the FPGA based system, which

predicts its class. For performance assessment of the system proposed, we stored the

This module generates a 3 bit output as
a result. Table 3 (see page 48) shows the
output value and its interpretation regard-
ing the type of fabric defect.

 Results and discussion
In the software based approach, the da-
taset is divided into training and testing
data sets using the k-fold cross valida-
tion technique to make the validation of
the model more general and unbiased.
The performance accuracy of the PNN Figure 8. System architecture of exponent unit.

Figure 7. Architecture of Euclidean distance calculation unit.

FIBRES & TEXTILES in Eastern Europe 2017, Vol. 25, 1(121)48

based software approach is assessed
using the 5-fold cross validation tech-
nique. One fold is used as a test dataset
at a time, while the system was trained
using other four folds. In this way train-
ing and testing were done for 5 times.
The generalized accuracies referring to
the testing are estimated as the average
accuracy±standard deviation (σ) of five
cycles for the test set. The value of σ is
tuned to be 0.1. The accuracies of testing
are found to be 98 ± 2%.

In the FPGA based system, the same
dataset is applied in a similar approach
as described above. Initially each class
module stores 8 training vectors for the
respective class in the system. One test
vector is given as the input to the FPGA
based system, which predicts its class.
For performance assessment of the sys-
tem proposed, we stored the sample vec-
tors alternately as training and testing in
accordance with the 5-fold cross valida-
tion method. The system has demonstrat-
ed a 94±2% accuracy for the test vectors.
The performance of the FPGA based sys-
tem may produce a better result if more
training vectors are stored by creating
more hidden nodes for the respective
class. A device utilisation summary is
given in Table 4. The FPGA based sys-
tem proposed operates at a maximum fre-
quency of 50.777 MHz, corresponding to
a clock period of 19.694ns.

In comparison to the PNN based soft-
ware approach, the FPGA based system
shows less accuracy in predicting the
class of the input vector because dif-
ferent parts of the system module trun-
cate the result of various operations to

the approximate value. But installation
of a dedicated FPGA based system for
inspecting fabric defects will be bene-
ficial to the textile industry. The degree
of parallelism in processing using the
FPGA on the board system results in
faster execution.

 Conclusions
The present study outlines the applica-
tion of computational intelligence in the
field of automatic fabric defect classifi-
cation. In this work a PNN based defect
classification system and its respec-
tive FPGA based system have been de-
signed. The training procedure of PNN
involves no weight adjustment, but it
simply stores each training vector as
a hidden node in the hidden layer, and
there is no concept of convergence of
the training algorithm, hence hardware
implementation of this PNN classifier is
a feasible solution. Therefore FPGA im-
plementation of a PNN based fabric de-
fect identification system is a novel one
and has great potentiality for automatic
inspection of fabric defects in the textile
industry. The PNN based software sys-
tem and its FPGA based hardware imple-
mentation gives 98±2% and 94±2% ac-
curacy, respectively, for the test data set.
The FPGA based system operates with
a maximum frequency of 50.777MHz.
Future work may be extended to imple-
ment the FPGA based system for image
capturing and GLCM matrix construc-
tion, which will be integrated with the
present architecture to design a complete
fabric inspection system.

Table 3. Different classes of fabric defects and thier respective binary output.

Output Defect

001 Normal (C1)

010 Neps (C2)

011 Broken threads (C3)

100 Broken picks (C4)

101 Oil strains (C5)

Table 4. Device utilisation summary of architecture proposed.

Parameter Used
Number of slices 57892
Number of flip flops 42196
Number of 4 input LUTs 93511
Number of bonded IOBs 143
Number of GCLKs 1
Maximum frequency 50.777 MHz

References
 1. John M and Sebastian S. Applica-

tion Specific Integrated Circuits. Addi-
son-Wesley, 1997.

 2. Jenkins JH. Designing with FPGAs and
CPLDs. Prentice-Hall, 1994.

 3. Weste NH and Eshraghian K. Principles
of CMOS VLSI Design: A Systems Per-
spective. Pearson Education Asia, 2000.

 4. Bhasker J. A VHDL Primer. 3rd ed, Pren-
tice Hall PTR, 1998.

 5. Hai-feng C. Design and Implementa-
tion of Real-time Fabric Defect Detec-
tion System. Advances in information
Sciences and Service Sciences 2012;
4(21): 23-30.

 6. Diana M, Radu M, Nicholas HZ, Phillip S,
Pradeep KK, Sungmee P, Sundaresan
J, Stefan J, Christl L, Werner W, Tunde
K, Didier C, Janusz G, Gerhard T, Mark
J, Tom M and Zahi N. Electronic Textiles:
A Platform for Pervasive Computing.
The IEEE, 2003; 91(12): 1995-2018.

 7. Specht DF. Probabilistic neural networks.
Neural Networks1990; 3(1): 109-118.

 8. El-EmaryIMM and RamakrishnanS.On
the Application of Various Probabilistic
Neural Networks in Solving Different Pat-
tern Classification Problems. World Applied
Sciences Journal 2008; 4(6): 772-780.

 9. Eason G, Randall Wilson and D. Center
Point Selection for Probabilistic Neural
Networks. In: International Conference
on Artificial Neural Networks and Genet-
ic Algorithms, 1997. pp. 514-517.

10. Wilson DR and Tony RM. Heterogene-
ous Radial Basis Functions. Internation-
al Conference on Neural Networks,1996;
paper no.2, pp.1263-1267.

11. Wilson DR. and Tony RM. Improved Het-
erogeneous Distance Function. Journal
of Artificial Intelligence Research 1997;
6(1):1-34.

12. Stanfill C. and Waltz D. Towards Memo-
ry Based Reasoning. Communication of
the ACM 1986; 29(12): 1213-1228.

13. Ramakrishnan S. and Selvan S. Clas-
sification of Brain Tissues Using Multi-
wavelet Transformation and Probabilis-
tic Neural Network. International Journal
of Simulation: Systems, Science and
Technology 2006; 7(9): 9-25.

14. Ramakrishnan S and Selvan S. Image
Texture Classification Using Wavelet
Based Curve Fitting and Probabilistic
Neural Network. International Journal of
Imaging Systems and Technology 2007;
17(4): 266-275.

15. Tian B, Mahmood R A, Thomas H, Vonder
H and Donald R. Temporal Updating
Scheme for Probabilistic Neural Network
with Application to Satellite Cloud Classifi-
cation. IEEE Transactions on Neural Net-
works 2000; 11(4): 903-920.

16. Tsai S, Lin CH and Lin JJ. Applying an
Artificial Neural Network to Pattern Rec-
ognition in Fabric Defects. Text Res J
1995; 65(3): 123-130.

 Received 15.03.2016 Reviewed 30.06.2016

