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Abstract
This study proposes a fabric defect classification system using a Probabilistic Neural Ne-
twork (PNN) and its hardware implementation using a Field Programmable Gate Arrays 
(FPGA) based system. The PNN classifier achieves an accuracy of 98 ± 2% for the test 
data set, whereas the FPGA based hardware system of the PNN classifier realises about 
94±2% testing accuracy. The FPGA system operates as fast as 50.777 MHz, corresponding 
to a clock period of 19.694 ns.
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We must acknowledge the reality that 
every mass production system engen-
ders a wide variety of flaws or defects 
in its products, and in this the respect 
textile industry is no exception. In the 
weaving shed, the production of flaw-
less woven fabrics principally preoc-
cupies the probing eye of the quality 
control department because a defective 
piece of fabric would weigh heavily on 
the cost burden of the garment industry 
and a second or off-quality product can 
barely reclaim more than 45-60% of the 

value of a fresh product. Different types 
of fabric defects are as follows: neps, 
broken threads, broken picks, and oil 
strains. Sample images of these defects 
are shown in Figure 1. In the cut-throat 
competitive market of today, a conscious 
and discerning buyer would be expect 
to have zero tolerance for defects. And 
present day state-of-the-art technology 
enables a weaving machine to insert the 
weft at a rate of over 2000 m/min. Hav-
ing scaled such a fantastic height for the 
weft insertion rate, a machine producing 
defective fabrics that escapes the vigi-
lant eye of the weaver can be halted to 

Figure 1. Typical image of different fabric defects: (a) oil stain, (b) broken end, (c) neps, 
(d) broken pick.

a) b)
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set right its malfunctioning not before 
an appreciable length of fabric has been 
woven forth. Hence it is highly desirable 
that as soon as a defect starts generating, 
it must be detected and its class must be 
ascertained so that the right remedial ac-
tion can be initiated for the earliest res-
toration. Therefore the need of the hour 
is a real time on-line automatic fabric 
inspection system.

Recently Field Programmable Gate Ar-
rays (FPGA) have become the dominant 
form of programmable logic [1-4]. FPGA 
can implement far larger logic functions 
compared to other programmable devices 
like programmable array logic (PAL) and 
complex programmable logic (CPLD). 
FPGA supports sufficient logic to imple-
ment complete systems and sub-systems 
for real time applications. FPGA exploits 
the increasing capacity of integrated cir-
cuits to provide designers with reconfig-
urable logic that can be programmed on 
an application-specific basis. FPGA de-
sign allows designers to create their own 
modules according to their needs and 
further upgrade the system convenient-

Figure 2. Flowchart of fabric defect classi-
fication system.

ly. This drastically increases flexibility 
in both the design process and the final 
artifact by permitting one board-level 
design to perform many functions, or to 
be upgraded in the field. A system design 
based on FPGA is flexible, with the ad-
vantages of parallelism and low cost. But 
little work has been reported in the liter-
ature [5-6] related to the application of 
FPGA in textile technology. Hai-feng [5] 
used the Gabor filtering algorithm for de-
fect detection and implemented the same 
using FPGA. Diana et al. [6] reported on 
the development of wearable smart fab-
rics with wireless communication capa-
bilities using FPGA.

In this study, a Field Programmable Gate 
Array(FPGA) based fabric defect clas-
sification system using a Probabilistic 
Neural Network(PNN) is proposed to 
identify different fabric defects. Firstly 
a multi-class PNN [7-15] is used to con-
struct a pattern recognition system for 
classifying fabric defects under different 
categories. In the case of the PNN clas-
sifier, the training process requires the 
computation of two equations only for 

Figure 3. Schematic representation of PNN architecture.
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	 Fabric defect classification: 
PNN based software approach 

The yarn defect classification system 
consists of the following steps – i) cap-
turing images of the yarn defects, ii) 
feature extraction from the captured im-
ages, and iii) classification of the images 
using the Probabilistic Neural Network. 
The pattern recognition system for clas-
sifying fabric defects can be partitioned 
into a numbers of steps, as illustrated in 
Figure 2 (see page 43). In this article, 
an attempt has been made to implement 
a FPGA based system for the classifi-
cation step only. For this purpose, Tsai 
et al’s [16] experimental data has been 
used, where they employed a grey lev-
el co-occurrence matrix to obtain the 
feature parameters f1, f2, f3, f4, f5 & f6 for 
various defect categories such as neps, 
broken ends, broken picks and oil strains. 
The categories are identified by num-
bers, namely, 1-normal, 2-nep, 3-bro-
ken threads, 4-broken picks, 5-oil strain. 
Among the feature vectors, f1, f2, f3, and f4 
are the contrast measurement of texture 
images along 0°, 45°, 90° and 135° when 
spatial displacement d = 1, while f5 and f6 
are the contrast values at d = 12, θ = 0° 
and d = 16, θ = 90°, respectively, where 
θ is the direction angle. The dataset com�-
prises of a total of 50 experimental data 
encompassing 10 experiments per cate-
gory. Table 1 refers to the datasets repre-
senting various fabric defects. These fea-
tures are normalised in the range of [0 1] 
using the following Equation (1) 

    fi

(data set for which the output class is known) is less[7-9] compared to other classifiers. 

The PNN training algorithm is a deterministic process, whereas the training algorithm of 

other classifiers involves a convergence process (where the number of iteration cannot be 

determined prior to execution). In a second application, a FPGA based hardware system is 

designed for  possible implementation of the PNN classifier for identifying  fabric defects.

FABRIC DEFECT CLASSIFICATION: PNN BASED SOFTWARE APPROACH 
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images of the yarn defects, ii) feature extraction from the captured images, and iii) 

classification of the images using the Probabilistic Neural Network.  The pattern 

recognition system for classifying fabric defects can be partitioned into a numbers of steps,

as illustrated in Figure 2.  In this article, an attempt has been made to implement a FPGA 

based system for the classification step only. For this purpose, Tsai et al’s [16]
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to obtain the feature parameters f1, f2, f3, f4, f5 & f6 for various defect categories such as 
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Five different categories, i.e., one for nor-
mal and the rest for four fabric defects, 
are classified using the PNN. The train-
ing data set along with its known class is 
used to train the PNN, and the test data 
set is used for cross validation. 

Figure 3 (see page 43) shows a block 
diagram of the PNN classification sys-
tem. When an input is presented, the 
hidden layer computes the distance 
from the input vector to the training 
input vectors. This produces a vector 
whose elements indicate how close the 
input is to the training inputs. The sum-
mation layer sums the contribution for 
each class of inputs and produces its 
net output as a vector of probabilities. 
Finally a compete transfer function for 
the output of the summation layer picks 
the maximum of these probabilities and 
indicates a particular class as the output. 

Table 1. Dataset for various kinds of fabric defects.

Sample f1 f2 f3 f4 f5 f6 Defects*

1 0.3900 0.6402 0.3584 0.4205 0.3726 0.3434 1
2 0.4026 0.6362 0.3601 0.4320 0.3438 0.3442 1
3 0.3879 0.6161 0.3419 0.4153 0.3228 0.3547 1
4 0.3931 0.6381 0.3569 0.4284 0.3694 0.4308 1
5 0.3826 0.6298 0.3537 0.4234 0.3489 0.3435 1
6 0.3978 0.6433 0.3704 0.4430 0.3584 0.3811 1
7 0.3920 0.6464 0.3532 0.4221 0.3352 0.3859 1
8 0.3887 0.6363 0.3601 0.4202 0.3220 0.3257 1
9 0.3880 0.6322 0.3672 0.4302 0.3481 0.3378 1

10 0.3851 0.6228 0.3567 0.4361 0.3496 0.3371 1
11 0.3689 0.6188 0.3483 0.4026 0.4393 0.4813 2
12 0.3789 0.6173 0.3447 0.4042 0.3954 0.4213 2
13 0.3663 0.6173 0.3444 0.4045 0.4439 0.4788 2
14 0.3881 0.6345 0.3569 0.4305 0.4214 0.5121 2
15 0.3964 0.6362 0.3512 0.4236 0.4049 0.4210 2
16 0.3529 0.5768 0.3219 0.3865 0.4417 0.4725 2
17 0.3465 0.5874 0.3225 0.3819 0.4740 0.5255 2
18 0.3467 0.5767 0.313 0.3782 0.3845 0.4925 2
19 0.3697 0.5805 0.3232 0.3978 0.4660 0.4953 2
20 0.3537 0.5642 0.3182 0.3918 0.4358 0.5035 2
21 0.3509 0.5957 0.3507 0.4079 0.5432 0.3107 3
22 0.3661 0.5915 0.3361 0.4137 0.4808 0.2884 3
23 0.3717 0.5968 0.3237 0.4003 0.4708 0.3376 3
24 0.3589 0.5903 0.323 0.3931 0.4377 0.3266 3
25 0.3436 0.5775 0.3298 0.3907 0.4888 0.3454 3
26 0.3159 0.5158 0.3214 0.3981 0.5433 0.3301 3
27 0.3354 0.5356 0.3373 0.4095 0.5594 0.3677 3
28 0.3231 0.5202 0.3197 0.3899 0.5466 0.3510 3
29 0.3534 0.5655 0.3275 0.4129 0.5210 0.3302 3
30 0.3761 0.5795 0.3399 0.4324 0.5290 0.3305 3
31 0.3723 0.5821 0.2097 0.3695 0.3453 0.3765 4
32 0.3836 0.6022 0.3054 0.3861 0.3383 0.3429 4
33 0.3716 0.5918 0.3101 0.3761 0.3595 0.3248 4
34 0.4115 0.6037 0.2797 0.4036 0.3987 0.3294 4
35 0.4321 0.6446 0.3090 0.4157 0.4254 0.3284 4
36 0.3765 0.608 0.3098 0.3842 0.3198 0.3587 4
37 0.3987 0.6132 0.3145 0.3954 0.3272 0.3829 4
38 0.3840 0.5953 0.3123 0.3920 0.3165 0.4022 4
39 0.3854 0.6023 0.3101 0.3890 0.3154 0.3635 4
40 0.3873 0.5970 0.3074 0.3944 0.3554 0.3735 4
41 0.4000 0.4976 0.3254 0.3969 0.5242 0.4233 5
42 0.2626 0.3115 0.2417 0.2633 0.4584 0.3841 5
43 0.2657 0.3276 0.2263 0.2723 0.3681 0.4321 5
44 0.3640 0.4823 0.3034 0.3518 0.5274 0.6200 5
45 0.4051 0.5158 0.3361 0.4082 0.6228 0.6095 5
46 0.3592 0.4453 0.3003 0.3543 0.4673 0.4100 5
47 0.4049 0.4874 0.3207 0.3977 0.5187 0.4240 5
48 0.3586 0.4805 0.3102 0.3614 0.4967 0.8066 5
49 0.3049 0.3866 0.2726 0.3215 0.4967 0.5492 5
50 0.4029 0.5257 0.3363 0.4028 0.5465 0.4661 5

*Fabric defects 1-normal, 2-neps, 3-broken threads, 4-broken picks, 5-oil strains

each training vector [7-16], thus the time 
required for training using the training 
data set (data set for which the output 
class is known) is less [7-9] compared to 
other classifiers. The PNN training algo-
rithm is a deterministic process, whereas 
the training algorithm of other classifiers 

involves a convergence process (where 
the number of iteration cannot be deter-
mined prior to execution). In a second 
application, a FPGA based hardware sys-
tem is designed for possible implementa-
tion of the PNN classifier for identifying 
fabric defects. 
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The function of each layer of the PNN is 
discussed below.

The input layer contains m nodes (in this 
study m = 6) for each of the input features 
of the vector, x = {f1, f2,..., f6}. These are 
fan-out nodes that branch at each feature 
input node to all nodes in the hidden lay-
er, so that each hidden node receives the 
complete input feature vectors. 

The hidden layer contains one neuron 
for each vector in the training data set. It 
stores the values of the predictor variables 
for the vector along with the target value. 
A hidden neuron computes the Euclidean 
distance of the test case from the neuron’s 
center point (that is the stored vector, 
x(P)) and then maps it to the Radial Basis 
Function (RBF), as given in Equation 2:

 

 Five different categories, i.e., one for normal and the rest for four fabric defects, are 

classified using the PNN. The training data set along with its known class is used to train 

the PNN, and the test data set is used for cross validation.  

 Figure 3 shows a block diagram of the PNN classification system. When an input is 
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The σ value can be taken to be one-half 
the average distance between the feature 
vectors in the same group, or at each ex-
emplar it can be one-half the distance 
from the exemplar to its nearest other ex-
emplar vector.

The summation layer neurons compute 
the maximum likelihood of the pattern, x 
being classified into class cj; j = 1, 2,... 5, 
by summarising and averaging the output 
of all neurons that belong to the same 
class. The actual target category of each 
training case is stored with each hidden 
neuron; all the weighted values coming 
out from the hidden neurons (of a specific 
class) are fed only to the summation neu-
ron that corresponds to the hidden neu-
ron’s category. The jth summation node 
sums up the values received from the kth 
group of hidden nodes using Equation 3:
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Where N = number of hidden nodes for a particular class, 𝑥𝑥𝑖𝑖
(𝑃𝑃) denotes the vector stored in 

a hidden node 𝑖𝑖.
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Hence the output layer compares the weighted votes for each of the five pattern nodes of 

the pattern layer, uses the largest vote to predict the target category, and thereby 

recognizes the test vector in the jth class. 

 The features of fabric defects extracted from the captured image and associated type of 

defects are initially used to train the five class PNN classifier and thereafter the trained 

PNN is used for test dataset classification. The performance of the PNN classifier is cross 

validated using k-fold cross validation. 
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Hence the output layer compares the 
weighted votes for each of the five pat-

Figure 4. System architecture of system proposed.

tern nodes of the pattern layer, uses the 
largest vote to predict the target category, 
and thereby recognizes the test vector in 
the jth class.

The features of fabric defects extracted 
from the captured image and associated 
type of defects are initially used to train 
the five class PNN classifier and thereaf-
ter the trained PNN is used for test data-
set classification. The performance of the 
PNN classifier is cross validated using 
k-fold cross validation.

	 FPGA implementation of PNN 
classifier

The system architecture for classification 
proposed is shown in Figure 4, which 
has a pipelined architecture and consists 
of 5 class modules of 6 inputs of 23 bits 
and a comparator which has 1 output of 3 
bits. From the output we can identify the 
type of defect corresponding to the input 
values.

Class modules
Allclass modules take a test vector  
x = {x1, x2, x3, x4, x5, x6} of six features, 
each of 23 bits as inputs. It computes the 
probability of belonging to the each class 
of the test vector and its computed value 
is forwarded to the comparator module. 
The probability value is computed using 
Equation 2. Each of the class modules 
is comprised of 8 vector modules, one 
summation module and one multiplier 
module. The vector modules correspond-
ing to each class perform the function of 
the hidden node in the hidden layer of the 
PNN. Figure 5 (see page 46) shows the 
internal architecture of a class module.

Vector modules
Inside every class module there are 8 
vector modules which store a training 
vector of 6 features, each of 23 bits. Each 
vector module calculates the exponent

expression 
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5 shows the internal architecture of a class module. 
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 Inside every class module there are 8 vector modules which store a training vector of 6 

features, each of 23 bits. Each vector module calculates the exponent 
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of Equation 2 and forwards the value to the summation module,

which acts as the summation layer of the PNN. Each vector module again consists of a 

Euclidean distance calculator module, one multiplier unit and one exponent calculation 

unit. Figure 6 shows the internal architecture of each vector module.

Euclidean distance unit in the vector module 

 of Equation 2 and 

forwards the value to the summation mod-
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Figure 5. Internal architecture of class module.

Figure 6. Internal architecture of vector module.

calculates the square of the Euclide-
an distance between the training vector 
x = {x1, x2, ... x6} and test vector using the 
equation given below:

 One Euclidean distance unit exists in each of the vector modules, which stores the 

training vector 𝑥𝑥 𝑝𝑝 =  𝑥𝑥1
𝑝𝑝 , 𝑥𝑥2

𝑝𝑝 ,… , 𝑥𝑥6
𝑝𝑝 , and upon receiving the test vector 𝑥𝑥 =

 𝑥𝑥1, 𝑥𝑥2,… , 𝑥𝑥6 , it calculates the square of the Euclidean distance between the training 

vector and  test vector using the equation given below: 

𝑒𝑒𝑒𝑒 =   𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
 𝑃𝑃  

2𝑛𝑛
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The Euclidean distance calculation unit consists of 6 subtraction sub-units and 6 square 

sub-units. The architecture of the Euclidean distance calculation unit is shown in Figure 7.

Each of the subtractor sub-units stores one  attribute (as 23 bit binary value ) of the 

training vector and computes the absolute distance between the respective feature value of 

the test vector and forwards the result to the corresponding multiplier. The square sub-unit 

in the Euclidean distance calculation unit simply squares the input and forwards the result 

to the summation module, which sums up the 6 inputs and its output ed  is forwarded to 

the outer multiplier unit. 

Multiplier unit in the vector module 

The multiplier unit in the vector module is used to multiply the constant value with the 

output value of the Euclidian distance unit. In this present work 10.0  and 
22

1


is 

multiplied with ed as: 

22
1

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This calculated value is forwarded to the exponent unit for further calculation. 

Exponent unit in the vector module 

A Taylor series expansion of the exponent is given as:  

   (5)
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consists of 6 subtraction sub-units and 
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is shown in Figure 7. Each of the sub-
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Table 2. Sample outputs of exponent block.

SL x (Float) x(23 bit) ex (Actual) ex  (Computed 23 bit value)
1 0.45999991893768 01110101110000101000111 1.584073857 1.1001010110000101110111
2 0.789999996185303 11001010001111010111000 2.203396342 10.001101000001000111001
3 0.98999989032745 11111101011100001010001 2.691234177 10.101100001111010010111
4 0.65809988975525 10101000011110010011110 1.9311197 1.1110111001011101110111
5 0.25959992408752 01000010011101010010010 1.2964114 1.0100101111100001100111
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assessed using the 5-fold cross validation technique. One fold is used as a test dataset at a 

time, while the system was trained using other four folds. In this way training and testing 

were done for 5 times. The generalized accuracies referring to the testing are estimated as 

the average accuracy±standard deviation (σ) of five cycles for the test set. The value of σ is

tuned to be 0.1. The accuracies of testing are found to be 98 ± 2%.

In the FPGA based system, the same dataset is applied in a similar approach as 

described above. Initially each class module stores 8 training vectors for the respective 

class in the system. One test vector is given as the input to the FPGA based system, which 

predicts its class. For performance assessment of the system proposed, we stored the 

This module generates a 3 bit output as 
a result. Table 3 (see page 48) shows the 
output value and its interpretation regard-
ing the type of fabric defect.

	 Results and discussion
In the software based approach, the da-
taset is divided into training and testing 
data sets using the k-fold cross valida-
tion technique to make the validation of 
the model more general and unbiased. 
The performance accuracy of the PNN Figure 8. System architecture of exponent unit.

Figure 7. Architecture of Euclidean distance calculation unit.
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based software approach is assessed 
using the 5-fold cross validation tech-
nique. One fold is used as a test dataset 
at a time, while the system was trained 
using other four folds. In this way train-
ing and testing were done for 5 times. 
The generalized accuracies referring to 
the testing are estimated as the average 
accuracy±standard deviation (σ) of five 
cycles for the test set. The value of σ is 
tuned to be 0.1. The accuracies of testing 
are found to be 98 ± 2%.

In the FPGA based system, the same 
dataset is applied in a similar approach 
as described above. Initially each class 
module stores 8 training vectors for the 
respective class in the system. One test 
vector is given as the input to the FPGA 
based system, which predicts its class. 
For performance assessment of the sys-
tem proposed, we stored the sample vec-
tors alternately as training and testing in 
accordance with the 5-fold cross valida-
tion method. The system has demonstrat-
ed a 94±2% accuracy for the test vectors. 
The performance of the FPGA based sys-
tem may produce a better result if more 
training vectors are stored by creating 
more hidden nodes for the respective 
class. A device utilisation summary is 
given in Table 4. The FPGA based sys-
tem proposed operates at a maximum fre-
quency of 50.777 MHz, corresponding to 
a clock period of 19.694ns.

In comparison to the PNN based soft-
ware approach, the FPGA based system 
shows less accuracy in predicting the 
class of the input vector because dif-
ferent parts of the system module trun-
cate the result of various operations to 

the approximate value. But installation 
of a dedicated FPGA based system for 
inspecting fabric defects will be bene-
ficial to the textile industry. The degree 
of parallelism in processing using the 
FPGA on the board system results in 
faster execution.

	 Conclusions
The present study outlines the applica-
tion of computational intelligence in the 
field of automatic fabric defect classifi-
cation. In this work a PNN based defect 
classification system and its respec-
tive FPGA based system have been de-
signed. The training procedure of PNN 
involves no weight adjustment, but it 
simply stores each training vector as 
a hidden node in the hidden layer, and 
there is no concept of convergence of 
the training algorithm, hence hardware 
implementation of this PNN classifier is 
a feasible solution. Therefore FPGA im-
plementation of a PNN based fabric de-
fect identification system is a novel one 
and has great potentiality for automatic 
inspection of fabric defects in the textile 
industry. The PNN based software sys-
tem and its FPGA based hardware imple-
mentation gives 98±2% and 94±2% ac-
curacy, respectively, for the test data set. 
The FPGA based system operates with 
a maximum frequency of 50.777MHz. 
Future work may be extended to imple-
ment the FPGA based system for image 
capturing and GLCM matrix construc-
tion, which will be integrated with the 
present architecture to design a complete 
fabric inspection system. 

Table 3. Different classes of fabric defects and thier respective binary output.

Output Defect

001 Normal (C1)

010 Neps (C2)

011 Broken threads (C3)

100 Broken picks (C4)

101 Oil strains (C5)

Table 4. Device utilisation summary of architecture proposed.

Parameter Used
Number of slices 57892 
Number of flip flops 42196
Number of 4 input LUTs 93511
Number of bonded IOBs 143 
Number of GCLKs 1
Maximum frequency 50.777 MHz
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