PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of nanosilica stabilisation on the bearing capacity under undrained conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ stabilizacji nanokrzemionką na nośność podłoża gruntowego w warunkach bez odpływu
Języki publikacji
EN
Abstrakty
EN
Due to the increasing necessity of building on soils with insufficient bearing capacity, the development of methods for soil improvement is an important geotechnical engineering issue. One of the innovative methods of soil stabilisation is the use of nano-additives. The paper presents the influence of nanosilica on the bearing capacity under the footing under undrained conditions. For this purpose, a simple and quick unconfined compression test was used to evaluate the undrained shear strength of selected silty soil. Tests were conducted for soil without additives and with nanosilica contents of 1, 3 and 5%. All samples were compacted to the maximum dry density in a Proctor apparatus, and strength tests were conducted after 7 days of curing. The results clearly show an increase in undrained shear strength with increasing nanosilica content. Based on these data, a parametric analysis of the bearing capacity under the strip footing was performed for 4 variants of nanosilica content and for 9 loading cases. Thus, the impact of stabilisation in a practical engineering issue was presented. For all load cases the optimal dimensions of the foundation were determined. In addition, for the selected case, calculations were made for a fixed foundation dimension. All computations were performed in accordance with Eurocode 7 with GEO5 software.
PL
Ze względu na coraz powszechniejszą konieczność posadowienia obiektów na gruntach o niewystarczającej nośności, rozwój metod ulepszania i stabilizacji podłoża gruntowego jest aktualnym wyzwaniem inżynierii geotechnicznej. Jedną z innowacyjnych metod stabilizacji gruntu jest wykorzystanie nanododatków jako materiału stabilizującego. Zaletami tego rozwiązania są mniejsza ilość dodatku wymagana do uzyskania określonej poprawy właściwości mechanicznych gruntu względem tradycyjnych metod oraz mniejszy negatywny wpływ na środowisko. W kontekście ulepszenia podłoża gruntowego nanododatkami wybór nanokrzemionki (nano SiO2) stanowi optymalne rozwiązanie z punktu widzenia skuteczności i kosztów. W pracy przedstawiono wpływ zawartości nanokrzemionki na nośność podłoża pod ławą fundamentową w warunkach bez odpływu. W praktyce warunki te występują przede wszystkim w sytuacjach przejściowych, gdy następuje szybki przyrost obciążeń. W pierwszej kolejności wykonano badania laboratoryjne mające na celu określenie parametrów wytrzymałości wybranego gruntu bez dodatku oraz stabilizowanego nanokrzemionką. W tym celu wykorzystano prosty i szybki test jednoosiowego ściskania pozwalający na ocenę wytrzymałości gruntu w warunkach bez odpływu. Badania laboratoryjne wykonano dla wybranego gruntu pylastego. Testy przeprowadzono dla czystego materiału gruntowego oraz z dodatkiem nanokrzemionki 1, 3 i 5%. Wszystkie próbki zostały zagęszczone do maksymalnej gęstości objętościowej szkieletu gruntowego w aparacie Proctora a testy wytrzymałościowe przeprowadzono po 7 dniach dojrzewania próbek. Badania wykazały średni wzrost wytrzymałości na ścinanie bez odpływu Cu odpowiednio o 18.1%, 54.9% i 76.0% w porównaniu do gruntu bez dodatku. Zaobserwowano również znaczny wzrost modułu siecznego Eu50 tj. odpowiednio 29.7%, 111.0% i 120.1%. W przypadku wytrzymałości stwierdzono liniową zależność wytrzymałości od zawartości nanokrzemionki. Dla sztywności ta zależność była inna, jednak ze względu na duży rozrzut wyników nie można było sformułować jednoznacznych wniosków. Otrzymane dane znacznie odbiegają od tych prezentowanych w literaturze dla podobnych typów gruntów i zawartości nanokrzemionki, co prawdopodobnie spowodowane jest innymi czynnikami wpływającymi na wyniki badań.
Rocznik
Strony
269--284
Opis fizyczny
Bibliogr. 48 poz., il., tab.
Twórcy
  • Wrocław University of Environmental and Life Sciences, Department of Civil Engineering, Wrocław, Poland
autor
  • Wrocław University of Environmental and Life Sciences, Department of Civil Engineering, Wrocław, Poland
autor
  • Wrocław University of Environmental and Life Sciences, Department of Civil Engineering, Wrocław, Poland
Bibliografia
  • [1] K.C. Onyelowe and O.F. Okafor, “A comparative review of soil modification methods”, ARPN Journal of Earth Sciences, vol. 1, no. 2, pp. 36-41, 2012.
  • [2] S.Z.S. Zaliha, H. Kamarudin, A.M.M.A. Bakri, M. Binhussain, and M.S.S. Salwa, “Review on soil stabilization techniques”, Australian Journal of Basic and Applied Sciences, vol. 7, no. 5, pp. 258-265, 2013.
  • [3] A.R. Estabragh, H. Rafatjo, and A.A. Javadi, “Treatment of an expansive soil by mechanical and chemical techniques”, Geosynthetics International, vol. 21, no. 3, pp. 233-243, 2014, doi: 10.1680/gein.14.00011.
  • [4] H.L. Luo, D.H. Hsiao, D.F. Lin, and C.K. Lin, “Cohesive soil stabilized using sewage sludge ash/cement and nano aluminum oxide”, International Journal of Transportation Science and Technology, vol. 1, no. 1, pp. 83-99, 2012, doi: 10.1260/2046-0430.1.1.83.
  • [5] M.R. Taha and O.M.E. Taha, “Influence of nano-material on the expansive and shrinkage soil behavior”, Journal of Nanoparticle Research, vol. 14, art. no. 1190, 2012, doi: 10.1007/s11051-012-1190-0.
  • [6] W.R. Azzam, “Durability of expansive soil using advanced nanocomposite stabilization”, International Journal of GEOMATE, vol. 7, no. 1, pp. 927-937, 2014.
  • [7] B. Iranpour and A. Haddad, “The influence of nanomaterials on collapsible soil treatment”, Engineering Geology, vol. 205, pp. 40-53, 2016, doi: 10.1016/j.enggeo.2016.02.015.
  • [8] N. Ghasabkolaei, A.J. Choobbasti, N. Roshan, and S.E. Ghasemi, “Geotechnical properties of the soils modified with nanomaterials: a comprehensive review”, Archives of Civil and Mechanical Engineering, vol. 17, no. 3, pp. 639-650, 2017, doi: 10.1016/j.acme.2017.01.010.
  • [9] X. Ren and K. Hu, “Effect of nanosilica on the physical and mechanical properties of silty clay”, Nanoscience and Nanotechnology Letters, vol. 6, no. 11, pp. 1010-1013, 2014, doi: 10.1166/nnl.2014.1857.
  • [10] R. Kong, F. Zhang, G. Wang, and J. Peng, “Stabilization of loess using nano-SiO2”, Materials, vol. 11, no. 6, art. no. 1014, 2018, doi: 10.3390/ma11061014.
  • [11] G. Quercia, P. Spiesz, G. Hüsken, and H.J.H. Brouwers, “SCC modification by use of amorphous nano-silica”, Cement and Concrete Composites, vol. 45, pp. 69-81, 2014, doi: 10.1016/j.cemconcomp.2013.09.001.
  • [12] V.F. Utkaeva, “Specific surface area and wetting heat of different soil types in European Russia”, Eurasian Soil Science, vol. 40, no. 11, pp. 1193-1202, 2007, doi: 10.1134/S1064229307110075.
  • [13] L. W. Petersen, P. Moldrup, O.H. Jacobsen, and D.E. Rolston, “Relations between specific surface area and soil physical and chemical properties”, Soil Science, vol. 161, no. 1, 1996.
  • [14] Z.H. Majeed and M.R. Taha, “A review of stabilization of soils by using nanomaterials”, Australian Journal of Basic and Applied Sciences, vol. 7, no. 2, pp. 576-581, 2013.
  • [15] G. Kannan and E. R. Sujatha, “A review on the choice of nano-silica as soil stabilizer”, Silicon, vol. 14, pp. 6477-6492, 2021, doi: 10.1007/s12633-021-01455-z.
  • [16] E. Kalkan and S. Akbulut, “The positive effects of silica fume on the permeability, swelling pressure and compressive strength of natural clay liners”, Engineering Geology, vol. 73, no. 1-2, pp. 145-156, 2004, doi: 10.1016/j.enggeo.2004.01.001.
  • [17] E. Kalkan, “Effects of silica fume on the geotechnical properties of fine-grained soils exposed to freeze and thaw”, Cold Regions Science and Technology, vol. 58, no. 3, pp. 130-135, 2009, doi: 10.1016/j.cold regions.2009.03.011.
  • [18] E. Kalkan, “Influence of silica fume on the desiccation cracks of compacted clayey soils”, Applied Clay Science, vol. 43, no. 3-4, pp. 296-302, 2009, doi: 10.1016/j.clay.2008.09.002.
  • [19] A.J. Alrubaye, M. Hasan, and M.Y. Fattah, “Stabilization of soft kaolin clay with silica fume and lime”, International Journal of Geotechnical Engineering, vol. 11, no. 1, pp. 90-96, 2017, doi: 10.1080/19386362.2016.1187884.
  • [20] S.E. Mousavi, “Utilization of silica fume to maximize the filler and pozzolanic effects of stabilized soil with cement”, Geotechnical and Geological Engineering, vol. 36, no. 1, pp. 77-87, 2018, doi: 10.1007/s10706-017-0305-x.
  • [21] B.R. Phanikumar, M.J. Raju, and E.R. Raju, “Silica fume stabilization of an expansive clay subgrade and the effect of silica fume-stabilised soil cushion on its CBR”, Geomechanics and Geoengineering, vol. 15, no. 1, pp. 64-77, 2020, doi: 10.1080/17486025.2019.1620348.
  • [22] P. Singh, H.K. Dash, and S. Samantaray, “Effect of silica fume on engineering properties of expansive soil”, Materials Today: Proceedings, vol. 33, pp. 5035-5040, 2020, doi: 10.1016/j.matpr.2020.02.839.
  • [23] T. Ji, “Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2”, Cement and Concrete Research, vol. 35, no. 10, pp. 1943-1947, 2005, doi: 10.1016/j.cemconres.2005.07.004.
  • [24] K. Behfarnia and N. Salemi, “The effects of nano-silica and nano-alumina on frost resistance of normal concrete”, Construction and Building Materials, vol. 48, pp. 580-584, 2013, doi: 10.1016/j.conbuildmat.2013.07.088.
  • [25] R.B. Azhiri, R.M. Tekiyeh, E. Zeynali, M. Ahmadnia, and F. Javidpour, “Measurement and evaluation of joint properties in friction stir welding of ABS sheets reinforced by nanosilica addition”, Measurement, vol. 127, pp. 198-204, 2018, doi: 10.1016/j.measurement.2018.05.005.
  • [26] P. Dileep, S. Jacob, and S. K. Narayanankutty, “Functionalized nanosilica as an antimicrobial additive for waterborne paints”, Progress in Organic Coatings, vol. 142, art. no. 105574, 2020, doi: 10.1016/j.porgcoat.2020.105574.
  • [27] S.H. Bahmani, B.B.K. Huat, A. Asadi, and N. Farzadnia, “Stabilization of residual soil using SiO2 nanoparticles and cement”, Construction and Building Materials, vol. 64, pp. 350-359, 2014, doi: 10.1016/j.conbuildmat.2014.04.086.
  • [28] F. Changizi and A. Haddad, “Effect of nano-SiO2 on the geotechnical properties of cohesive soil”, Geotechnical and Geological Engineering, vol. 34, no. 2, pp. 725-733, 2016, doi: 10.1007/s10706-015-9962-9.
  • [29] A. Kalhor, M. Ghazavi, M. Roustaei, and S.M. Mirhosseini, “Influence of nano-SiO2 on geotechnical properties of fine soils subjected to freeze-thaw cycles”, Cold Regions Science and Technology, vol. 161, pp. 129-136, 2019, doi: 10.1016/j.coldregions.2019.03.011.
  • [30] Z. Zięba, K. Witek, and J. Mońka, “The effect of micro- and nanosilica on the soil permeability coefficient under cyclic freezing and thawing conditions”, E3S Web of Conferences, vol. 66, art. no. 02004, 2018, doi: 10.1051/e3sconf/20186602004.
  • [31] Z. Zięba, D. Garlikowski, and J. Mońka, “The influence of nanosilica on unconfined compressive strength of frost-susceptible soil”, IOP Conference Series: Materials Science and Engineering, vol. 603, no. 4, 2019, doi: 10.1088/1757-899X/603/4/042060.
  • [32] Z. Zięba, K. Witek, W. Kilian, J. Mońka, and R. Swierzko, “Influence of micro and nanosilica on the frost-heave process”, IOP Conference Series: Materials Science and Engineering, vol. 471, art. no. 042020, 2019, doi: 10.1088/1757-899X/471/4/042020.
  • [33] A.H. Vakili, S.I. Shojaei, M. Salimi, M.R. bin Selamat, and M.S. Farhadi, “Contact erosional behaviour of foundation of pavement embankment constructed with nanosilica-treated dispersive soils”, Soils and Foundations, vol. 60, no. 1, pp. 167-178, 2020, doi: 10.1016/j.sandf.2020.02.001.
  • [34] G. H. Barbhuiya and S. D. Hasan, “Effect of nano-silica on physio-mechanical properties and microstructure of soil: A comprehensive review”, Materials Today: Proceedings, vol. 44, pp. 217-221, 2021, doi: 10.1016/J.MATPR.2020.09.115.
  • [35] M. Y. Fattah, A. A. Al-Saidi, and M. M. Jaber, “Improvement of bearing capacity of footing on soft clay grouted with lime-silica fume mix”, Geomechanics and Engineering, vol. 8, no. 1, art. no. 1, 2015.
  • [36] A. Arefnia, A. Dehghanbanadaki, and K.A. Kassim, “Ultimate bearing capacity of strip footing resting on clay soil mixed with tire-derived aggregates”, Frontiers of Structural and Civil Engineering, vol. 15, no. 4, pp. 1016-1024, 2021, doi: 10.1007/s11709-021-0751-7.
  • [37] M. Ornek, M. Laman, A. Demir, and A. Yildiz, “Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil”, Soils and Foundations, vol. 52, no. 1, pp. 69-80, 2012, doi: 10.1016/j.sandf.2012.01.002.
  • [38] Z. B. Malik, B. Alshameri, S. M. Jamil, and D. Umar, “Experimental and numerical modeling of bearing capacity of foundations on soft clay stabilized with granular material”, International Journal of Geosynthetics and Ground Engineering, vol. 7, no. 4, art. no. 91, 2021, doi: 10.1007/s40891-021-00334-2.
  • [39] J. Sumalatha, “Bearing capacity and settlement analysis of black cotton soil amended with rubber powder using the GEO5 software tool”, in Advances in Sustainable Construction Materials. Singapore, 2021, pp. 291-302, doi: 10.1007/ 978-981-33-4590-4_27.
  • [40] ISO 17892-4:2016 Geotechnical investigation and testing - Laboratory testing of soil - Part 4: Determination of particle size distribution.
  • [41] PN-EN ISO 14688-1:2018-05 Geotechnical investigation and testing - Identification and classification of soil - Part 1: Identification and description.
  • [42] ISO 9277:2010 Determination of the specific surface area of solids by gas adsorption - BET method.
  • [43] ISO 10390:2005 Soil quality - Determination of pH.
  • [44] P.P. Abhilash, D.K. Nayak, B. Sangoju, R. Kumar, and V. Kumar, “Effect of nano-silica in concrete; a review”, Construction and Building Materials, vol. 278, art. no. 122347, 2021, doi: 10.1016/j.conbuildmat.2021.122347.
  • [45] EN 13286-2:2010 Unbound and hydraulically bound mixtures - Part 2: Test methods for laboratory reference density and water content - Proctor compaction.
  • [46] ISO 17892-7:2017 Geotechnical investigation and testing - Laboratory testing of soil - Part 7: Unconfined compression test.
  • [47] S. Garcia, P. Trejo, O. Ramirez, J. Lopez-Molina, and N. Hernandez, “Influence of nanosilica on compressive strength of lacustrine soft clays”, presented at the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, 2017, pp. 17-21.
  • [48] S.M. Haeri, A.M. Hosseini, M.M. Shahrabi, and S. Soleymani, “Comparison of strength characteristics of gorgan loessial soil improved by nano-silica, lime and portland cement”, in From Fundamentals to Applications in Geotechnics. 2015, pp. 1820-1827, doi: 10.3233/978-1-61499-603-3-1820.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fcf2f17-a391-4c6c-aba2-748cde24d47d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.