Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents detailed two-phase adiabatic pressure drops data for refrigerant R134a. Study cases have been set for a mass flux varying from 200 to 400 kg/m2s, at the saturation temperature of 19.4°C. Obtained experimental data was compared with the available correlations from the literature for the frictional pressure drop during adiabatic flow. Influence of mixture preparation on pressure drop was investigated, for varying inlet subcooling temperature in the heated section. The flow patterns have also been obtained by means of a high-speed camera placed in the visualization section and compared with literature observations.
Czasopismo
Rocznik
Tom
Strony
101--118
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wz.
Twórcy
autor
- Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Norwegian University of Science and Technology, Department of Energy and Proces Engineering, N-7491 Trondheim, Norway
Bibliografia
- [1] MUSZYNSKI T., KOZIEL S.M.: Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator. Arch. Thermodyn. 37(2016), 3, 45–62. DOI:10.1515/aoter-2016-0019.
- [2] BOHDAL T., CHARUN H., SIKORA M.: Empirical study of heterogeneous refrigerant condensation in pipe minichannels. Int. J. Refrig. 59(2015), 210–223. DOI:10.1016/j.ijrefrig.2015.07.002.
- [3] MUDAWAR I., HOWARD A.H., GERSEY C.O.: An analytical model for near-saturated pool boiling critical heat flux on vertical surfaces. Int. J. Heat Mass Transf. 40(1997), 2327–2339.
- [4] MIKIELEWICZ D., ANDRZEJCZYK R., JAKUBOWSKA B., MIKIELEWICZ J.: Analytical model with nonadiabatic effects for pressure drop and heat transfer during boiling and condensation flows in conventional channels and minichannels. Heat Transf. Eng. 37(2016), 1158–1171.
- [5] TRAN T.N., WAMBSGANSS M.W., FRANCE D.M.: Small circular-and rectangular-channel boiling with two refrigerants. Int. J. Multiph. Flow. 22(1996), 485–498.
- [6] MUSZYNSKI T., MIKIELEWICZ D.: Comparison of heat transfer characteristics in surface cooling with boiling microjets of water, ethanol and HFE7100. Appl. Therm. Eng. 93(2016), 1403–1409. DOI:10.1016/j.applthermaleng.2015.08.107.
- [7] MUSZYNSKI T., ANDRZEJCZYK R.: Applicability of arrays of microjet heat transfer correlations to design compact heat exchangers. Appl. Therm. Eng. 100(2016), 105–113, DOI:10.1016/j.applthermaleng.2016.01.120.
- [8] NAKAYAMA W., NAKAJIMA T., HIRASAWA S.: Heat sink studs having enhanced boiling surfaces for cooling of microelectronic components. ASME Pap. 84-WA/HT-89(1984).
- [9] MARTO P.J., LEPERE V.J.: Pool boiling heat transfer from enhanced surfaces to dielectric fluids. J. Heat Transfer. 104(1982), 292–299.
- [10] ANDRZEJCZYK R., MUSZYNSKI T.: Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness. Arch. Thermodyn. 37(2016), 4, 137–159. DOI:AOT-00010-2016-04.
- [11] MUSZYNSKI T., ANDRZEJCZYK R.: Heat transfer characteristics of hybrid microjet – microchannel cooling module. Appl. Therm. Eng. 93(2016), 1360–1366. DOI:10.1016/j.applthermaleng.2015.08.085.
- [12] ANDRZEJCZYK R., MUSZYNSKI T., ALBERTO DORAO C.: Experimental investigations on adiabatic frictional pressure drops of R134a during flow in 5mm diameter channel. Exp. Therm. Fluid Sci. 83(2017), 78–87. DOI:10.1016/j.expthermflusci.2016.12.016.
- [13] MIKIELEWICZ D., JAKUBOWSKA B.: Prediction of flow boiling heat transfer coefficient for carbon dioxide in minichannels and conventional channels. Arch. Thermodyn. 37(2016), 2, 89–106. DOI:10.1515/aoter-2016-0014.
- [14] MIKIELEWICZ D., ANDRZEJCZYK R.: Comparative study of flow condensation in conventional and small diameter tubes. Arch. Thermodyn. bf 33(2012), 2, 67–83. DOI:10.2478/v10173-012-0011-2.
- [15] MIKIELEWICZ J., MIKIELEWICZ D.: Thermal-hydraulic issues of flow boiling and condensation in organic Rankine cycle heat exchangers. Arch. Thermodyn. 33(2012), 1, 41–66. DOI:10.2478/v10173-012-0002-3.
- [16] MUSZYNSKI T.: Design and experimental investigations of a cylindrical microjet heat exchanger for waste heat recovery systems. Appl. Therm. Eng. 115(2017),782–792. DOI:10.1016/j.applthermaleng.2017.01.021.
- [17] DORAO C.A., LANGELAND T., FERNANDINO M.: Effect of heating profile on the characteristics of pressure drop oscillations. Chem. Eng. Sci. 158(2017), 453–461. DOI:10.1016/j.ces.2016.10.009.
- [18] VAN OEVELEN T., WEIBEL J.A., GARIMELLA S.V.: Predicting two-phase flow distribution and stability in systems with many parallel heated channels. Int. J. Heat Mass Tran. 107(2017), 557–571. DOI:10.1016/j.ijheatmasstransfer.2016.11.050.
- [19] LEE J., CHAE H., CHANG S.H.: Flow instability during subcooled boiling for a downward flow at low pressure in a vertical narrow rectangular channel. Int. J. Heat Mass Tran. 67(2013), 1170–1180. DOI:10.1016/j.ijheatmasstransfer.2013.08.049.
- [20] N. REFPROP, standard reference database 23. NIST Thermodyn. Prop. Refrig. Mix. Database (REFPROP). Version. 9 (2002).
- [21] HAALAND S.E.: Simple and explicit formulas for the friction factor in turbulent pipe flow. J. Fluids Eng. 105(1983), 1, 89–90.
- [22] OULD DIDI M.B., KATTAN N., THOME J.R.: Prediction of two-phase pressure gradients of refrigerants in horizontal tubes. Int. J. Refrig. 25(2002), 935–947. DOI:10.1016/S0140-7007(01)00099-8.
- [23] TRAN T.N., CHYU M.-C., WAMBSGANSS M.W., FRANCE D.M.: Two-phase pressure drop of refrigerants during flow boiling in small channels: An experimental investigation and correlation development. Int. J. Multiph. Flow. 26(2000), 11, 1739–1754.
- [24] ZHANG M., WEBB R.L.: Correlation of two-phase friction for refrigerants in small-diameter tubes. Exp. Therm. Fluid Sci. 25(2001), 3–4, 131–139. DOI:10.1016/S0894-1777(01)00066-8.
- [25] THOME J.R.: Engineering Databook III. Wolverine Tube Inc. 2010 (2004).
- [26] FRIEDEL L.: Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow. In: Eur. Two-Phase Flow Gr. Meet. Pap. E, 1979.
- [27] WOJTAN L., URSENBACHER T., THOME J.R.: Investigation of flow boiling in horizontal tubes: Part II—Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. Int. J. Heat Mass Tran. 48(2005), 2970–2985.
- [28] KATTAN N., THOME J.R., FAVRAT D.: Flow boiling in horizontal tubes: Part 1 – Development of a diabatic two-phase flow pattern map. J. Heat Transfer. 120(1998), 1, 140–147.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fc93d76-c97f-4efa-aeb6-ff9765adc114