PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of a dedicated circular coil for Magnetic Resonance Spectroscopy studies in small phantoms and animal acquisition with a 3 Tesla Magnetic Resonance clinical scanner

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Magnetic Resonance Spectroscopy (MRS) is a very powerful tool to explore the tissue components, by allowing a selective identification of molecules and molecular distribution mapping. Due to intrinsic Signal-to-Noise Ratio limitations (SNR), MRS in small phantoms and animals with a clinical scanner requires the design and development of dedicated radiofrequency (RF) coils, a task of fundamental importance. In this article, the authors describe the simulation, design, and application of a 1H transmit/receive circular coil suitable for MRS studies in small phantoms and small animal models with a clinical 3T scanner. In particular, the circular coil could be an improvement in animal experiments for tumor studies in which the lesions are localized in specific areas. Material and methods: The magnetic field pattern was calculated using the Biot–Savart law and the inductance was evaluated with analytical calculations. Finally, the coil sensitivity was measured with the perturbing sphere method. Successively, a prototype of the coil was built and tested on the workbench and by the acquisition of MRS data. Results: In this work, we demonstrate the design trade-offs for successfully developing a dedicated coil for MRS experiments in small phantoms and animals with a clinical scanner. The coil designed in the study offers the potential for obtaining MRS data with a high SNR and good spectral resolution. Conclusions: The paper provides details of the design, modelling, and construction of a dedicated circular coil, which represents a low cost and easy to build answer for MRS experiments in small samples with a clinical scanner.
Rocznik
Strony
269--276
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
  • Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
  • Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
  • Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
  • Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
  • Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
  • Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
Bibliografia
  • 1. Faghihi R, Zeinali-Rafsanjani B, Mosleh-Shirazi M-A, et al. Magnetic Resonance Spectroscopy and its Clinical Applications: A Review. J Med Imag Rad Sci 2017;48:233-253. DOI: 10.1016/j.jmir.2017.06.004
  • 2. van der Graaf M. In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. Eur Biophys J 2010;39:527–540. DOI: 10.1007/s00249-009-0517-y
  • 3. Hoult DI, Richards RE. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 1976;24:71–85. DOI: 10.1016/j.jmr.2011.09.018
  • 4. Herrmann K-H, Schmidt S, Kretz A, et al. Possibilities and limitations for high resolution small animal MRI on a clinical wholebody 3T scanner. Magn Reson Mater Phy 2012; 25(3):233-244. DOI: 10.1007/s10334-011-0284-5
  • 5. Pillai DR, Heidemann RM, Kumar P, et al. Comprehensive small animal imaging strategies on a clinical 3 T dedicated head MRscanner; adapted methods and sequence protocols in CNS pathologies. PLoS ONE 2011;6(2):e16091. DOI: 10.1371/journal.pone.0016091
  • 6. Giovannetti G, Hartwig V, Positano V, Vanello N. Radiofrequency coils for Magnetic Resonance applications: theory, design and evaluation. Critical Reviews in Biomedical Engineering 2014;42(2):109-135. DOI: 10.1615/critrevbiomedeng.2014011482
  • 7. Fratila RM, Velders AH. Small-volume Nuclear Magnetic Resonance Spectroscopy. Annu Rev Anal Chem 2011;4:227–249. DOI: 10.1146/annurev-anchem-061010-114024
  • 8. Wang H, Ciobanu L, Edison AS, Webb AG. An eight-coil high-frequency probehead design for high-throughput nuclear magnetic resonance spectroscopy. J Magn Reson 2004;170(2):206-212. DOI: 10.1016/j.jmr.2004.07.001
  • 9. Giovannetti G, Flori A, De Marchi D, et al. Simulation, design and test of an elliptical surface coil for Magnetic Resonance Imaging and Spectroscopy. Conc Magn Reson Part B 2018; 47B(4):e21361. DOI: 10.1002/cmr.b.21361
  • 10. Giovannetti G, Frijia F, Flori A, Montanaro D. Design and simulation of a Helmholtz coil for Magnetic Resonance Imaging and Spectroscopy experiments with a 3T MR clinical scanner. App Magn Reson 2019;50(9):1083-1097. DOI: 10.1007/s00723-019-01141-9
  • 11. Herrmann K-H, Schmidt S, Kretz A, et al. Possibilities and limitations for high resolution small animal MRI on a clinical wholebody 3T scanner. Magn Reson Mater Phy 2012; 25(3):233-244. DOI: 10.1007/s10334-011-0284-5
  • 12. Tomanek B. Radio Frequency Coils for Magnetic Resonance Spectroscopy. In: Webb GA (eds). Modern Magnetic Resonance. Dordrecht: Springer; 2008. p.1163-1170.
  • 13. Mispelter J, Lupu M, Briguet A. NMR probeheads for biophysical and biomedical experiments. London: Imperial College Press; 2015.
  • 14. Maier LC, Slater JC. Field strength measurements in resonant cavities. J App Phys 1952;23:68-77. DOI: 10.1063/1.1701980
  • 15. Giovannetti G, Frijia F, Menichetti L, et al. Coil sensitivity estimation with perturbing sphere method: application to 13C birdcages. App Magn Res 2012;42:511-518. DOI: 10.1007/s00723-012-0323-z
  • 16. Soher BJ, van Zijl PC, Duyn JH, Barker PB. Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 1996;35: 356–363. DOI: 10.1002/mrm.1910350313
  • 17. Jin J. Electromagnetic Analysis and Design in Magnetic Resonance Imaging. Boca Raton: CRC; 1998.
  • 18. Giovannetti G. Comparison between circular and square loops for low-frequency magnetic resonance applications: theoretical performance estimation. Conc Magn Reson Part B 2016; 46B:146–155. DOI: 10.1002/cmr.b.21343
  • 19. Darrasse L, Kassab G. Quick measurement of NMR-coil sensitivity with a dual-loop probe. Rev Sci Instrum 1993;64:1841-1844. DOI: 10.1063/1.1144020
  • 20. Haase A, Odoj F, Von Kienlin M, et al. NMR probeheads for in vivo applications. Conc Magn Reson 2000;12 (6):361-388. DOI: 10.1002/1099-0534(2000)12:63.3.CO;2-C
  • 21. Chen C, Hoult DJ. Biomedical magnetic resonance technology. Bristol: IOP;1989.
  • 22. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192–225. DOI: 10.1002/mrm.1910160203
  • 23. Zhu H, Barker PB. MR Spectroscopy and Spectroscopic Imaging of the Brain. Methods Mol Biol 2011;711:203–226. DOI: 10.1007/978-1-61737-992-5_9
  • 24. Schirmer T, Wener B, Hancu I, Martin E. SNR measurements in a single voxel MRS experiment. Proc Intl Soc Mag Reson Med 2005;13:2504.
  • 25. Li BS, Regal J, Gonen O. SNR versus resolution in 3D 1H MRS of the human brain at high magnetic fields. Magn Reson Med 2001;46(6):1049-1053. DOI: 10.1002/mrm.1297
  • 26. Gonen O, Gruber S, Li BS, Mlynárik V, Moser E. Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. Am J Neuroradiol 2001;22(9):1727-1731.
  • 27. Edelstein WA, Glover GH, Hardy CJ, Redington RW. The intrinsic signal-to-noise ratio in NMR imaging. Magn Res Imag 1986;3:604-618. DOI: 10.1002/mrm.1910030413
  • 28. Alecci M, Brivati JA, Placidi G, Testa L, Lurie DJ, Sotgiu A. A submicrosecond resonator and receiver system for Pulsed Magnetic Resonance with large samples. J Magn Reson 1998;132:162-166. DOI: 10.1006/jmre.1998.1398
  • 29. Kreis R. Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed. 2004;17:361–381. DOI:10.1002/nbm.891
  • 30. Giovannetti G. Multiturn surface coil: theoretical considerations on unloaded to loaded Q ratio and SNR. Conc Magn Reson Part B 2014; 44B(2):27-31. DOI: 10.1002/cmr.b.21259
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fc903bb-aeb3-404f-a9c0-d5112600e814
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.