e-Informatica Software Engineering Journal, Volume 18, Issue 1, 2024, pages: 240109, DOI: 10.37190/e-Inf240109

An N-Way Model Merging Approach Based
on Artificial Bee Colony Algorithm

Tong Ye*2 Gongzhe Qiao™*
*College of Computer and Software, Nanjing Vocational University of Industry Technology
**College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics

yetong@nuaa.edu.cn, ggz@nuaa.edu.cn

Abstract

Background: In N-way model merging, model matching plays an important role. However,
the N-way model matching problem has been recognized as NP-hard.

Aim: To search the optimal or near-optimal matching solution efficiently, this paper
proposes an N-way model matching algorithm based on the Artificial Bee Colony (ABC)
algorithm.

Method: This algorithm combines global heuristic search and local search to deal with the
complexity of N-way model matching. We evaluated the proposed N-way model merging
approach through case studies and we evaluated the proposed ABCMatch algorithm by
comparing it with Genetic Algorithm (GA) and Elephant Herding Optimization (EHO).
Results: The experimental results show that ABCMatch can obtain more accurate
model matching solutions in a shorter time, and the average model matching accuracy of
ABCMatch is 2.7725% higher than GA and 1.8804% higher than EHO.

Conclusion: Results demonstrate that our method provides an effective way for software
engineers to merge UML models in collaborative modeling scenarios.

Keywords: Model driven development, Tools for software researchers or practi-
tioners, Project management

1. Introduction

Model-Driven Software Engineering (MDSE) is an important direction of Software En-
gineering. It refers to the systematic use of models as first-class entities throughout the
software engineering life cycle [1]. Models are less bound to the underlying implementation
technology and are much closer to the problem domain. They accelerate the development
process of complex systems by improving the abstraction level of software development.
With the increasing complexity of software systems, it is almost impossible to model complex
systems by a single user. The efficiency of software development can be greatly improved
by adopting the Collaborative MDSE approach [2] where multiple stakeholders manage,
collaborate, and are aware of each other’s work on a set of shared models. Since UML
(Unified Modeling Language) class diagram [3] is one of the most commonly used models for
software modeling, this paper focuses on collaborative modeling using UML class diagrams.

Generally, collaborative modeling are divided into online (real-time) collaboration and
offline collaboration. Our approach is proposed to support offline collaboration where
users modify their models locally and push the changes later. In the process of offline

© 2024 The Authors. Published by Wroctaw University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 7 Nov. 2023; Revised: 21 Jun. 2024; Accepted: 22 Jun. 2024; Available online: 31 Jul. 2024

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3812-3105

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

i B

oM | | Om© | R
© o v | | Ommv
D H &) & H

(a) Collaborative modeling using existing version control systems.

i

Submit a model.

4 H Discuss and resolve conflicts.
b

0 Fail to merge due to conflicts.

< :) Successfully merged.
(b) Collaborative modeling using the N-way model merging tool.

Figure 1. Comparison of collaborative modeling using existing version control systems
and the N-way model merging tool

collaborative modeling, any modification will lead to different branches of the model. So it
is important to merge different versions and branches periodically to obtain an integrated
single model. Collaborative teams often use version control systems such as EMFStore [4]
and CDO model repositor [5]. However, these tools [4, 5] only support two-way or three-way
model merging. To make the motivation clear, Figure 1 gives an example of the model
merging process of a five-member team, circles of each color represent the models submitted
by each member. As shown in Figure 1(a), using the existing version control system, each
member needs to wait for others to deal with the conflicts immediately, and only after
resolving the conflicts can the next merge be carried out. To save the extra waiting time,
we propose a practical N-way model merging approach to merge N models at a time. As
shown in Figure 1(b), this approach not only reduces the number of negotiations but also
saves time for submitting one by one.

In N-way model merging, the first challenge is that it is hard to well examine the overall
search space effectively because N-way model matching is known as NP-hard as it requires
to cope with a huge search space of possible element combinations [6]. How to efficiently
check the entire search space to obtain more accurate N-way model matching solutions is
a complex optimization problem. Optimization is one of the most important hot topics
in scientific and technical areas [7]. Solving complex optimization problems in real life is
considered to be a huge challenge. In recent years, numerous researchers have made efforts
to solve optimization problems [8-11]. Some researchers use classical methods such as
gradients, Lagrange, and linear mathematical to solve optimization problems [7]. However,
due to the complex mathematical processes and nonlinear objective functions, classical
optimization algorithms are unable to solve complex optimization problems efficiently [7].
In contrast, meta-heuristic algorithms based on group and cooperation are very effective in
solving NP-hard problems [7].

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

Meta-heuristic methods search the optimal and near-optimal solutions by simulating
natural behaviors or events [8, 12, 13]. At present, the meta-heuristic method has been
listed as one of the most promising methods to solve optimization problems. Widely used
meta-heuristic algorithms include Artificial Bee Colony (ABC) [14], Genetic Algorithm
(GA) [15], Grey Wolf Optimizer (GWO) [16], Symbiotic Organisms Search (SOS) [17],
Whale Optimization Algorithm (WOA) [18], Farmland Fertility Algorithm (FFA) [19],
Elephant Herding Optimization (EHO) [20], Sparrow Search Algorithm (SSA) [21], Tunicate
Swarm Algorithm (TSA) [22], Honey Badger Algorithm (HBA) [23], Northern Goshawk
Optimization (NGO) [24]. Compared with traditional optimization methods, meta-heuristic
algorithms have the advantages of simplicity, fewer parameters, avoiding local optimization
and strong flexibility [25]. Because of these advantages, meta-heuristic methods have been
widely used to solve various complex and difficult optimization problems.

Although most of the existing meta-heuristic algorithms have the above advantages,
different meta-heuristic algorithms also have different weaknesses when facing different
optimization issues [7]. With the change of the problem set, different optimization algorithms
may show different performances [7]. Therefore, in order to solve complex optimization
problems, an effective optimization method should consider all aspects of the problem. And
it is necessary to select the most appropriate optimization algorithm according to the type
of problem and search space [7].

The Artificial Bee Colony (ABC) algorithm [14] searches for the optimal solution through
the random and objective evolution of candidate solution sets. In this algorithm, each food
source represents a feasible solution to the problem to be solved, and the nectar quantity
of the food source represents the fitness of the feasible solution. Bees are divided into three
roles: employed bees, onlookers, and scouts. Through the cooperation of these three types
of bees, the optimal solution or near-optimal solution can be obtained efficiently. ABC
has good performance in searching possible solutions quickly and globally. At present, the
ABC algorithm has been successfully applied in many areas including software engineering,
medical image processing, economics, financial analysis, and network communication.
Existing research has proved that the ABC algorithm is very suitable for solving complex
and difficult combination problems [26]. Since the N-way model matching problem needs to
search the model matching solution with the highest matching degree from the combinations
of a large number of model elements, which is a complex combination problem, this paper
selects ABC and improved it to solve the N-way model matching problem.

The second challenge is that models are complex structures connected with model
relationships, so it is necessary to merge not only model elements but also their related
nodes. Existing N-way model merging approaches [6, 27, 28] focus mainly on matching
model elements. These approaches [6, 27, 28] ignore relationships in the model and break the
chain into pieces rather than reshuffling chained elements. Unlike these methods [6, 27, 28],
the proposed approach supports merging chained elements.

Conflict resolution is also an important challenge in model merging [29, 30]. Existing
approaches [29, 30] transfer the responsibility of resolving conflicts to users and it is
not applicable in complex merging situations where numerous conflicts lead to too many
decisions to make. To prevent conflicts automatically, we present the matching model which
is an intermediate form between the model matching results (generated by the proposed
ABCMatch algorithm) and the merged model. Each model element in the matching model
is assigned a priority number which is the same as the priority number of the model. When
conflicts occur, the model element with the highest priority is picked automatically.

This paper makes the following contributions:

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

— We propose a new model matching algorithm ABCMatch which combines global heuristic
search and local search together to deal with the complexity of N-way model matching.

— We propose a new N-way model merging approach based on the ABCMatch algorithm
to merge UML class diagrams of different versions.

— We evaluated ABCMatch by comparing it with GA and EHO. The results show that
ABCMatch performs better than GA and EHO in N-way model matching. The average
model matching accuracy of ABCMatch is 2.7725% higher than GA and 1.8804% higher
than EHO.

— We implemented the N-way model merging approach in Java and evaluated it by
comparing it with EMFStore through case studies. The results show that the proposed
approach performs better than EMFStore when a large number of models are required
to be merged at one time in collaborative modeling.

The rest of the paper is structured as follows. Section 2 discusses related works. Section 3
presents the overview of the proposed approach. Section 4 introduces the model comparison
method. Section 5 describes the ABCMatch algorithm. Section 6 presents the model
merging method. Section 7 evaluates the proposed approach. Finally, Section 8 concludes
this paper.

2. Related work

2.1. Two-way and three-way model merging

Model merging is a problem that has been studied for a long time in the area of collaborative
modeling. In the aspect of two-way model merging, Buneman et al. propose a model merging
algorithm named BDK [31], which creates the duplicate free union of two models based
on the name equality of model elements. However, BDK can only identify one-type conflict
as the proposed meta-meta-model contains only two relationships, Is-a and Has-a, where
Has-a must obey one-type restriction. Pottinger and Bernstein improve BDK by defining the
operator Merge and take mapping as its input [32]. However, this approach does not scale well
since the manual definition of each mapping is a labor-intensive and time-consuming process.

Other studies [33-36] apply the three-way model merging technique that performs model
merging on two models derived from the same ancestor model. Sharbaf et al. [33] present
a novel three-way model merging approach which uses pattern-based method to detect and
resolve conflicts in the merging process. Thao and Munson propose a three-way merging
algorithm [34] based on LCS (Longest Common Subsequence) algorithm. Debreceni et al.
propose a three-way operation-based merging algorithm [35]. However, they define only
two change annotations “must” and “may”. When two changes are both annotated by
“must” or “may”, the algorithm cannot determine which one to choose automatically. Our
approach defines different priorities for each model thus avoiding this problem. Schwagerl et
al. implement a three-way merging tool [36] for models in the Eclipse Modeling Framework
(EMF). It is more general than the EMF Compare match meta-model but still fails to
handle relationships as they omit the graph-like structure in the model. In this paper, we
consider not only model elements but also their relationships.

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

2.2. N-way model merging

Due to the problem of selection order in two-way and three-way model merging, some
approaches [6, 27, 28, 37—41] have been proposed to generate merged models from N existing
variants. Schultheiy et al. [37] propose a heuristic N-way model matching algorithm named
RaQuN, which uses multi-dimensional search trees to find suitable match candidates.
Kasaei et al. [38] present a formalism for specifying N-way model merging rules. They
implemented a syntax-aware editor and a parser to promote N-way merging rules for
EMF-based models. Boubakir et al. [39] propose a pairwise approach for model merging,
which improves the quality of the results by considering the order of combining the set
of input models. Rubin et al. present the NwM algorithm [6] for the N-way merging of
model variants. Assuncao et al. propose a search-based merge method [27] for UML model
variants. However, these methods [6, 27] ignore relationships in the model. As models are
complex structures connected with model relationships, it is necessary to merge not only
model elements but also their related nodes. In this paper, we consider all input relationship
chains and reshuffle elements from distinct chains by extracting the prior element link and
storing it in matching models.

Jiang et al. propose an entropy-based merging tool [40] to help merge models generated
by different modelers. However, it requires users to model in the way specified by the tool
and cannot support merging models built with existing widely used UML modeling tools.
In this paper, the proposed approach supports merging models built in the famous Papyrus
modeling environment [42].

Martinez et al. present a generic framework [41] for constructing merged models from
a set of model variants. But they assume that the variants are not independently generated
out of the same family of models and do not target to address the problem of model
similarity analysis. In addition, Reuling et al. [28] claim that Martinez et al. fail to support
imprecise matching. They propose a precise N-way model merging method [28] by encoding
the variability information using language-specific variability-encoding operators. However,
in this method, the new class contains all duplicated class properties which require further
manual handling. Our method merges duplicated model elements automatically rather
than simply enumerating them.

N-way model matching plays an important role in N-way model merging. The N-way
model matching problem is a complex optimization problem that requires to use optimiza-
tion methods to efficiently search the optimal or near-optimal model matching solution in
the huge search space. Approximate methods for solving optimization problems are divided
into heuristic methods and meta-heuristic methods [43]. Heuristic algorithms usually search
the optimal solution in a reasonable computing time. However, heuristic algorithms cannot
guarantee the optimal solutions and are easy to fall into local optimums [43]. Due to
the weaknesses of heuristic algorithms, many existing research studies have proposed
meta-heuristic algorithms to solve complex optimization problems.

Meta-heuristic algorithms are inspired by natural behavior or events. The existing
meta-heuristic algorithms can be divided into three categories: evolution-based algorithms,
physics-based algorithms, and population-based algorithms[43]. Evolution-based algorithms
mainly simulate the evolution process in nature to realize the overall progress of the
population. Physics-based algorithms usually imitate physical rules to achieve optimization.
Because of the strong flexibility and high performance, population-based algorithms have
attracted more attention in recent years. In this type of algorithm, each population is

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

a biological population. Population-based algorithms search the global optimal solution
through the cooperative behavior among individuals in the population.

Common population-based optimization algorithms are Artificial Bee Colony (ABC) [14],
Grey Wolf Optimizer (GWO) [16], Symbiotic Organisms Search (SOS) [17], Whale Op-
timization Algorithm (WOA) [18], Elephant Herding Optimization (EHO) [20], Sparrow
Search Algorithm (SSA) [21], Tunicate Swarm Algorithm (TSA) [22], etc. These algorithms
and their variants have been widely used to find the optimal values of functions, solve
multi-machine scheduling problems, multi-objective optimization problems, and so on. For
example, Mohammadzadeh et al. [8] proposed the BMAMH algorithm combined with multi-
ple swarm intelligence optimization algorithms to detect spam e-mail. Gharehchopogh [44]
improved the tunicate swarm algorithm and proposed the QLGCTSA algorithm with higher
performance to solve complex optimization problems. Abdollahzadehl et al. [45] proposed
three effective binary methods based on symbiotic biological search (SOS) algorithm to
solve the feature selection problem in information preprocessing. Bonab et al. 10 proposed
a new hybrid method based on fruit fly algorithm (FFA) and ant optimization algorithm
(ALO) to improve the performance of intrusion detection system.

Among existing population-based optimization algorithms, the ABC algorithm and
its variants avoid local optimal solution by using global and local search, which has the
advantages of high performance and strong flexibility. In recent years, more and more
researchers choose to use the ABC algorithm and its variants to solve complex optimization
problems in various fields. Oztiirk et al. studied the role of the ABC algorithm and its
variants in the field of medical image processing [46]. The ABC algorithm maintains a good
balance between global search and local search. It can not only be used for medical image
enhancement, including improving contrast, edge, artifact elimination, intelligent noise
reduction, but also has played an important role in medical image segmentation, such as
tumor detection, classifying image pixels into anatomical regions [46].Existing research
has confirmed that the ABC algorithm has better performance than other meta-heuristic
algorithms in solving various complex combination problems [26]. Because the N-way
model matching problem needs to search the model combination with the best matching
degree from the combinations of a large number of model elements, which is a complex
combination problem, we chose the ABC algorithm and improved it to solve the N-way
model matching problem.

2.3. Operation-based merging approach

Operation-based merging tries to solve the merge problem by merging operation sequences.
Mansoor et al. propose an operation-based model merging method [47]. They consider
merging different model versions as a multi-objective optimization problem. But the
importance score of each composite option is determined by different developers. It is hard
for them to compare importance scores of operations with each other while developing
as they are not sure what scores others might set and this might cause their important
operations disabled. In this paper, we define different priorities for input models from
a global perspective thus avoiding this problem.

Some existing approaches [48-50] apply rule-based methods in operation-based model
merging. Anwar et al. propose a formal approach [48] for model composition. RuCORD [49]
is a rule-based composite operation detection and recovery framework for merging models in
Eclipse. Chong et al. propose an operation-based approach [50] to merge different versions
of UML models. However, these methods [48-50] are not applicable in large-scale projects

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

as they require identifying corresponding model elements and defining formal composition
rules for each model element manually in the matching step. In addition, the detection and
recovery processes are supposed to be guided by users which are not applicable when there
are too many operations. To solve these problems, in this paper, we identify groups of
corresponding input model elements automatically by the ABCMatch algorithm and handle
conflicts by identifying the prior model. Furthermore, we consider N models simultaneously
which is more suitable for large-scale model merging.

2.4. Conflicts resolving

Koegel et al. present an approach [29] to make conflicts part of the model and represent
them as first-level entities based on issue modeling. However, this approach transfers the
responsibility of resolving conflicts to users and it is not applicable in complex merging
situations where numerous conflicts lead to too many decisions to make. Dam et al. propose
an approach [30] to automatically resolve all inconsistencies that arise during the merging
of model versions. They create a validation tree to evaluate constraint instances and build
a repair tree based on the validation tree which gives repair suggestions and checks if
a repair causes other inconsistencies. However, they fail to consider the situation where
repair suggestions form a cycle. This method is not applicable when merging large-scale
models as it may cause many cycle errors which cannot be solved automatically.

To summarize, in two-way and three-way model merging [31, 32, 34-36], results are
influenced by the order to pick input model elements. Among existing N-way model
merging methods [6, 27, 28, 40, 41], Rubin et al. [6], Assuncao et al. [27] and Reuling
et al. [28] ignore relationships in models, Jiang et al. [40] merge UML models which are
modeled in a specified way using their tool rather than common UML models, Martinez
et al. [41] fail to address the problem of model similarity analysis, and Reuling et al. [28]
fail to handle duplicated class properties. Among existing operation-based model merging
methods [47-50], Mansoor et al. [47], fail to define the priority from a global view which
might lead to important operations being disabled, and rule-based methods [48-50] require
much user interaction and fail to resolve conflicts automatically. In addition, existing
conflicts resolving methods [29, 30] are not applicable in N-way model merging where
numerous conflicts lead to too many decisions for users to make.

To address these problems and fill the research gap, we propose an N-way model
merging approach based on the ABC (Artificial Bee Colony) algorithm [14]. We identify
the prior model element and prior element link to generate the merged model from the
matching model. In this way, inconsistencies are avoided automatically. To solve the
matching problem of N-way model merging, we propose the ABCMatch algorithm which
can explore the search space and obtain the optimal matching solution efficiently.

3. Overview of the proposed approach

Existing studies [6, 48, 51| suggest that model merging can be divided into three steps: model
comparison, model matching, and model combination. In the comparison step, similarity
degrees between elements are calculated by comparing their corresponding sub-elements
and weighing the results using empirically determined weights. These weights represent the
contribution of model sub-elements to the overall similarity of their owning elements. In the
matching step, pairs of elements from the input models as well as their similarity degrees

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

are taken as inputs, and the outputs are groups of model elements that are considered
similar. In the model combination step, a new duplicate-free model that combines groups
of matched elements is generated.

In this paper, we propose a novel N-way model merging approach following the above-
mentioned three steps. The overview of the proposed approach is given in Figure 2.

Collaborative Modeling ‘

Models M1 ‘ M2 M“

Model ' /

Comparison Model .
Elements

Model Groups of
Matchi Model .
atching Elements |
The Best Solution with the Highest Matching Degree
- Generate the Matching Model [M ‘Modcl

. Model Element
Model Meta Matching Matching Model | Generate the Merged Model @ ‘ i
Coimbiition Model s, Group of Model

Merged Model (G Elements
L

Resolve Conflicts

Figure 2. Overview of the proposed approach

Model comparison. The similarity degree between two classes can be calculated as
a weighted sum of the similarity degrees of their names, properties, and methods. Although
numerous auto or semi-auto methods have been proposed to calculate similarity degrees,
gaps still exist when applying to N-way model merging. This is because, in N-way model
merging, multiple input models are considered at the same time. So model comparison
needs to calculate the similarity of a group of model elements rather than only two model
elements in two-way or three-way model merging. To solve this problem, we propose
a model comparison approach that can calculate the similarity of a group of model elements
(see details in Section 4). As shown in Figure 2, models to be merged are denoted as Mj,
Mas,...,M,,. Each model M; contains m; model elements denoted as e;1, €;2, ..., €im,,. We
define a group of models with different versions of common elements as a matching path,
which is denoted as G; in Figure 2. Multiple matching paths without common elements
constitute a model matching solution. To distinguish similarity degrees of a group of
model elements and a pair of elements, the sum of similarity degrees of model elements in
a matching path/solution is called the matching degree. In our approach, similarity degrees
between two classes are calculated based on the Jaccard similarity coefficient [52] which is
an index to measure the similarity between two sets. We calculate the matching degrees of
the matching paths from two dimensions: the class name and properties/methods. Both
metrics are complementary and assess two different aspects of the matching path: the first
one compares the string of a group of model elements while the second one focuses on
the number of properties/methods in common. A matching solution is a set of disjoint

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

matching paths, so the matching degree can be obtained by simply adding the matching
degrees of all matching paths.

Model matching. The goal of this step is to find the optimal matching solution with
the highest matching degree. The challenge is that it requires coping with a huge search
space of possible element combinations [6]. To solve this problem, we propose an N-way
model matching algorithm ABCMatch (see details in Section 5). First, the model matching
problem is transformed into the weighted maximum matching problem of graph theory.
Second, a two-dimensional integer array coding scheme of the food source is proposed by
improving the food source encoding in the original ABC algorithm. Third, the strategy
for generating candidate solutions is given. Then, all the feasible solutions (food sources)
are exploited by employed bees, onlookers, and scouts. Finally, the best matching solution
{G1,Ga,...,G,} with the highest matching degree is obtained which is used in the next
step to generate the matching model.

Model combination. In this step, a single global merged model is generated by combining
matched model elements. There exist two challenges in model combination. The first one is
that existing approaches [6, 28, 40, 41] ignore relationships in the model and break the chain
into pieces rather than reshuffling chained elements, while for model elements connected with
relationships, it is necessary to merge not only model elements but also their related nodes. The
second one is that N-way model merging is too complex for users to handle conflicts manually,
conflicts should be resolved automatically. To solve these problems, we propose a novel
approach to reshuffle elements from distinct chains (see details in Section 6). We present the
matching model which is an intermediate form between the model matching results (generated
by the ABCMatch algorithm) and the merged model. Relevant information needed for conflict
resolving and structural merging is represented in the matching model. We present the meta
matching model which consists of the type definitions for the objects of the matching model. As
shown in Figure 2, we build a temporary matching model based on the proposed meta matching
model and the best solution {G1, G, ..., G, } obtained in the model matching step. Based on
groups of matched model elements obtained by ABCMatch, matching model elements are gen-
erated. And for the relationships in input models, we extract the prior element links and store
them in the matching model to memorize the related nodes as well as relationships between
them in original models. Finally, we transform the matching model to the merged model.

4. Model comparison

The proposed matching algorithm is for UML class diagrams. We compare model elements
from two dimensions: (1) name and (2) properties/methods. Assuming that the vocabulary
used for naming model elements, properties, and methods are from corresponding domain
terminology, then we can determine whether two elements are similar by checking if they use
a similar vocabulary. This section gives the calculation method of similarity degree between
any two model elements, based on which, we present equations for calculating matching
degrees of matching paths and matching solutions. To make the idea more concrete, an
example is given to describe the process of model comparison.

4.1. Calculation of model matching degree

Jaccard similarity coefficient [52] is an index to measure the similarity between two sets. It
is widely used to compare the similarity between sample sets of limited sizes. It calculates

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

10

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

the similarity of sets from multiple dimensions. In each dimension, the value is usually
between [0, 1]. For example, given two sets A and B, the Jaccard coefficient is defined as
the ratio of the size of the intersection of A and B to the size of the union of A and B.
In this paper, we use the Jaccard similarity coefficient to calculate the similarity between
two model elements. For each pair of elements e; and es, the similarity degree Si(eq,eq) is
defined as the average value of the similarity degrees of their names and properties/methods.
String comparison is used in the calculation of the name dimension, where the number of
characters in the overlapping sub-string is divided by the total number of characters. For
the property/method dimension, the similarity degree is calculated by dividing the number
of common properties/methods of input elements by the number of properties/methods in
the union set of these two elements.

In the following, we extend the above-mentioned calculation method for two elements
to support the comparison of multiple elements in a matching path.

The matching path d = {e}, is composed of a set of model elements, and the matching
degree Pi(d) of d is the similarity among all model elements in set {e},. Similar to the
above-mentioned method, the calculation of Pi(d) also contains the same two dimensions.
The first dimension of name is calculated by Equation (1), where | cq| represents the
number of characters in the overlapping sub-string of names of all model elements in {e},
and Y |cg] — | N cq| is the number of the characters in the union set of all names.

Similarity__c_mul({e}q) = _ Nea (1)

~ Xleal = [Nedl
Suppose that there are N model elements in the matching path d = e;. The similarity
degree of properties/methods in d is calculated by Equation (2).

> Similarity__pm(e;, €j>
ei,j€{e}asi#j (2)
N(N —-1)/2

Similarity _pm_mul ({e},) =

In Equation (2), the numerator represents the sum of the similarity degrees between any
two different model elements in set d = {e};. Normalization of the result is implemented
by dividing the total cases of taking any two model elements from N model elements in
matching path d.

SiD({d}p) = > Pi(d) (3)

diE{d}D

The matching solution D = {d;}(1 < ¢ < n) contains multiple disjoint matching paths.
As shown in Equation (3), SiD is the matching degree of D which can be obtained by
simply calculating the sum of the matching degrees of all matching paths. With the help
of the proposed equations, we can calculate the matching degree of any given matching
path/solution.

4.2. An example of model comparison

In collaborative modeling, suppose that there are k models M; (1 < i < k), and each
model M; has m; (m; > 1) model elements, which are denoted as e;; (1 < j < my).
First, we calculate similarity degrees by pairs. Then, model elements from different models
whose similarity degrees are larger than the predefined threshold are put into a matching

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

path d. Multiple matching paths without intersection constitute a matching solution D.
The predefined threshold is supposed to be set by users according to actual needs. In this
paper, we use e;; — emp(se) to indicate that the model element e;; is similar to ey, and
the similarity degree is se. A case is given to illustrate the calculation process of model
comparison.

doclogin
-doclD -id
-docName €n -Address €11

-name

+doctorLogin():void

+login():void

: A
M
-nlD e 1
-nName i)
+nurselogin():void
doctorLogin login
s -1D
-id > €
e en -Name
-Tel el
+login():void
nurselogin M
-nlD e 2
-nName 23
-nAddress
doctorLogin T
Zio - -Name ;s
-dName (S5 Tel
+doctorLogin():void +login():void

+logout():void

nurselogin
-niD -siD
ANamic [SEES | -sName €

O+ -department
+nurselogin():void - P

+login():void
+logout():void

Figure 3. Three models of a “login” function in a medical system software

Figure 3 shows three models of a “login” function in a medical system software. The
input models to be merged are in three colors: deep blue (M), light blue (M) and green
(Ms3). In the three models, the classes e, e2; and es; describe the login function, the
classes eqo, €92 and egy describe the doctor login function and the classes ej3, es3 and
e33 describe the nurse login function, which are supposed to be merged. Calculated by
the proposed model comparison method, the similarity degrees of each pair of model
elements are: €11 — €21 (0.8750), €11 — €22 (0.5983), €11 — €31 (0.8333), €11 — €32 (0.3125),
€12 — €921 (0.3846), €12 — €922 (0.4211), €12 — €31 (0.3846), €12 — €32 (0.7179), €21 — €31 (0.94),
€21 — €32 (0.3125), €29 — €31 (0.4875), and €929 — €39 (05)

In this example, the predefined threshold is set to 0.5. A matching solution consists
of multiple matching paths without intersection. For example, d,; = {e11, €21, €31}, da2 =
{e12, €22, €32} and d,3 = {e13, €23, €33} are three valid matching paths. The three matching

11

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

12

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

paths form a matching solutions D = {d,1,d,2,da3}. According to Equation (1) and
Equation (2), the the model matching degrees of three follows: Pi(d,1) = 0.8462, Pi(ds2) =
0.6875, Pi(de3) = 0.9444. Substituting Pi(d,1), Pi(da2), and Pi(de3) into Equation (3),
we can obtain the model matching degree of D is SiD(D) = 2.4781. The details of the
generation of matching paths and matching solutions are described in Section 5.

5. The ABCMatch algorithm

In N-way model matching, it requires coping with a huge search space of possible element
combinations to find the optimal matching solution. In this section, first, the model
matching problem is transformed into the weighted maximum matching problem of graph
theory. Second, a search-based matching approach based on the ABC algorithm [14] is
proposed. Then, a two-dimensional integer array coding scheme of the food source is
proposed by improving the food source encoding in the original ABC algorithm [14] and
the strategy for generating candidate solutions is given. Finally, all the feasible solutions
are exploited by employed bees, onlookers, and scouts. By searching for the best model
matching solution through the bee colony’s exploration of food sources, this approach can
find the optimal matching solution with high efficiency.

5.1. The problem of model matching

In an undirected graph G, the points covered by an edge are defined as the endpoints of
the edge. The maximum matching problem is to find the largest edge set S that contains
the most edges where any endpoint in this graph is covered by only one edge. For weighted
graphs, the maximum matching problem is to find an edge set S with the maximum sum
of weights.

In this paper, the model elements to be matched are regarded as endpoints in the graph,
the matching path containing multiple elements is regarded as the edge of the graph. And
the matching degree of the matching path is regarded as the weight of the edge. The goal
is to find the optimal matching solution with the highest matching degree. Suppose that
G = (V, E) is an undirected graph and endpoint set V =V, UV, U ... UV, is composed
of n disjoint subsets, where each subset V; (1 < i < n) denotes the set of model elements
in the i-th model M;. The edge E(i,j) represents the matching correspondence between
element e; of M; and model element e; of M;. Assuming that there is an edge Ej;, between
e, and e;, and ey, does not belong to model M; or M, then the edges E(i,j) and E(i, k)
can form a matching path E(i, j, k). The goal to search for the best matching solution is
to find a group of matching paths with the maximum weight sum, where endpoints of each
path do not intersect with each other.

Suppose that there are £ models and the i-th model M; contains m; model elements.
If no more than one model element is selected from each model to participate in model

k

matching, there will be a total of]__[(mz + 1) matching paths. After excluding the situation
i=1

of empty set or the situation of only one model element, the number of paths p reduces

k k
to H(ml +1)—-1- Z:mz The set of matching solutions is the power set of all paths
i=1 i=1

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

minus the empty set, so there are 2P — 1 matching solutions. The optimal solution cannot
be obtained in linear time using enumeration methods and it is easy to miss the global
optimal solution using greedy algorithms. This paper improved the original ABC (Artificial
Bee Colony) algorithm [14] and proposes a search-based N-way model matching algorithm
ABCMatch.

5.2. Encoding

In the original ABC algorithm [14], each food source represents a feasible solution of the
problem to be solved, and the nectar quantity of the food source represents the fitness of
the feasible solution. Bees are divided into three roles: employed bees, onlookers, and scouts.
Through the cooperation of these three types of bees, the optimal solution or approximate
optimal solution is obtained with high efficiency. In this section, we propose the ABCMatch
algorithm improved by the ABC algorithm to solve the N-way model matching problem.
In the ABCMatch algorithm, the corresponding relationship between bee colony foraging
behavior and model matching problem is given in Table 1.

Table 1. Corresponding relationship between foraging behavior
of bee colony and model matching problem

Bees foraging Model matching
Food source position Model matching solution
Nectar quality Model matching degrees
Speed of searching and foraging Speed of algorithm optimization
The best food source The optimal model matching solution

The first dimension represents matching path

Dimension of food source
The second dimension represents matching solution

In the original ABC algorithm [14], the food source position represents the feasible
solution to the optimization problem, which is denoted by a multidimensional vector. In
the model matching problem, each candidate solution represents a feasible model matching
solution. Therefore, it is necessary to improve the food source encoding and the strategy for
generating candidate solutions. Here, we use a two-dimensional integer array coding scheme
to code the model matching solution. A matching path is represented by a two-dimensional
array d;, where d[i][j] = 1 indicates that the model element e;; is in the matching path,
and d[i|[j] = 0 indicates that it is not in the matching path. Multiple disjoint matching
paths compose a matching solution.

5.2.1. Initialization

The number of food sources is denoted as SN. In the initialization phase of the ABC-
Match algorithm, SN feasible solutions are generated randomly. Each matching path is
a two-dimensional matrix with m rows and m columns, where m is the maximum number
of model elements. According to the proposed coding scheme, to select the j-th element
from model M;, we need to set the value of the element in the j-th row and i-th column
to “1”. If all values in a column are set to “0”, which means no model element of the
corresponding model is taken.

Next, we check whether all the elements in the matrix are “0” or if there is only one
“1” in the matrix. If so, it means that the matching solution is empty or there is only

13

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

one model element. In that case, a new matching path is generated. In our approach,
a threshold GSiD of matching degrees is defined, and the matching degrees of S matching
paths are calculated. If the matching degree is less than GSiD, a new matching path will be
generated until matching degrees of S matching paths are all over GSiD. After generating
S valid paths, we compose them to generate SN matching solutions. This process needs to
satisfy the following rules:

1. Each matching solution has at least one matching path.

2. Matching paths must not intersect.

In the process of path combination, if the rules are not satisfied, a new combination
will be generated until SN feasible solutions are generated.

According to Equation (3), the model matching degree SiD(D;) of each matching
solution D; is calculated as the fitness value of the feasible solution. Among the fitness
values of SN feasible solutions, the maximum fitness value maz__ v and the optimal matching
solution best__s are recorded.

-doclD -id
-docName 812 -Address ell

+doctorLogin():void Wik b

nurselLogin

j::\?ame SE dl:{En,eu}

+nurselogin():void

¥ -ID
x § — €en
d3‘{E13'e23} -name e22 721:':“9 d12={€11,€z1,e31}
Tel i
. +login():void
i
-niD e M 2
d34={€13,€23,€33} “nName 2
-nAddress |
dz-{€,.e4}
doctorLogin 5ifS
-dID e = ':_“"Ime exn
-dName 32 athss
d4={e23,E33} [Fdoctoriogingveld +login():void
+logout():void

nurselLogin

-niD -sID
-nName € > -sName e,
= : |——>{ -department
| +nurselogin():void +|ogir;(-)-.\.;;i.d

+logout():void

Figure 4. Matching paths in the example

An example of the matching paths is shown in Figure 4. It shows three models of
a “login” function in a medical system software. The input models to be merged are
14 in three colors: deep blue (M), light blue (Ms) and green (Ms). Matching paths are

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

a set of elements (class diagrams) from different models. For example, the matching path
dy = {e11,e21} means “login: M;” and “login: My” are matched. Matching paths need to
be merged if they have intersections. For example, in Figure 4, the matching paths d; and

dy have intersection, which is consistent with (5), so they are merged to a new path dja.

Similarly, d3 and d, are merged to a new path ds4.

In the the initialization phase, first, valid paths di = {e11, €21}, d2 = {e11,e31}, d3 =
{e12,€e22,€32}, dy = {e11,e2}, ds = {e13,e23, €33} are generated randomly. Then, five
feasible matching solutions are obtained by composing the five paths di, do, ..., ds. After
deleting solutions with intersecting paths, the matching degrees of all matching solutions
are calculated, and the results are shown in Table 2.

Table 2. Matching solutions and model matching degrees

No. Matching solution = Matching degree

1 Dy = {di,ds} 1.5625
2 Dy = {ds,ds} 17777
3 D3 = {ds,ds} 1.2857
4 Dy = {dy,ds} 1.4732
5 Ds = {ds,ds} 1.5208

5.3. Iteration process

After initialization, all the feasible solutions (food sources) will be exploited. Each cycle
includes the behaviors of employed bees, onlookers, and scouts.

5.3.1. Employed bees phase

We assign an employed bee to each food source, thus the number of the employed bees is
SN too. In the initial matching solution, there are only S matching paths. The employed
bee exploits the neighborhood of the food source and adds matching paths. Because adding
a new matching path may cause conflicts with existing matching paths, it is necessary to
determine whether to delete the conflict elements in existing paths and add the new path
or just stay unchanged. In our approach, the decision is made according to the matching
degree. At the beginning of the cycle, each matching path d, in the food source is matched
with each path d, in solution D; and the conflict rate between them is calculated. Suppose
that there are k models where each model M; has m; model elements, the conflict rate is
denoted as P, and the boolean variable m is used to indicate whether the composition of
paths is necessary. There are three situations as follows:

1. If the collision rate of matching paths is 0 which means that all paths are disjoint, then

there is no need to merge the paths, which is formally expressed as (4).

2. If two paths have only one common element and there is no other model elements from

the same model in these paths, then the conflict rate is 0 and the composition of paths
is necessary. It is formally expressed as (5).

Vi, p,q € [1,k],Vj,t € [1,m;],3d,[i][5] + dy[d][j] > 1

Nj At Ndglpllt] +dylgl[t] <1— P=0,M =1 (5)

15

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

16

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

3. If there exist elements in the intersecting path from the same model, a conflict occurs.
It is formally expressed as (6).

Vi, p,q € [1,k],Vj,t € [1,m;],3d,[i][5] + dy[d][j] > 1

Nj#tAda[pl[t] + dylgl[t] > 1= P >0 (6)

The computation method of the conflict rate P is as (7).

n

P:(mi+mk)><(mi+mk—1)/2 (7)

In (7), n is the number of conflict element pairs. The conflict rate is the ratio of the
number of conflict pairs to the number of possible cases of taking any pair of elements in
the two matching paths.

In this approach, we add the new path according to the above three situations. If
P =0, M = 0, the path will be directly added to the matching solution; If P = 0,
M = 1, the path will be merged into the path that intersects with it in the matching
solution. If P > 0, we select the matching path d, whose conflict rate P is less than the
predefined threshold P’, and add the path d, to the matching solution D; to generate
matching solution Neighbour_ D,. Then, we delete the model elements in the original
solution that conflict with the new path. In the above-mentioned example, the paths of
Do are re-matched. After generating new matching paths according to the rules, a new
matching solution Dj is obtained. A new matching solution Neighbour__D; is a new food
source. If the model matching degree of Neighbour__D, is greater than that of D;, the food
source will be updated.

In the above example, for the first employed bee, it selects food source D and adds it
to Ds. Then, the path in Dy with the least matching conflict to D is added to solution
D5, and the new food source is [d1,ds,ds,ds]. As di and ds have intersection, which is
consistent with (5), they are merged to a new path dj, as shown in Figure 4. After merging,
we can get the new matching solution Df = {d},, ds,ds}. Then we calculate the matching
degree SiD(D)) = 2.4781, which is better than the original Dy = 1.7777, so we accept the
new food source. When all employed bees have completed the search, the new population
is shown in Table 3. The number updated in this iteration is indicated by the underline.

Table 3. Updated matching solutions and matching degrees

No. Matching solution Matching degree

1 Dy = {dy,ds} 1.5625
2 Dy={d, ds,ds} 2.4781
3 Dy = {dj, ds} 1.5382
4 Dy = {dy,ds} 1.4732
5 Ds = {da,ds} 1.5208

5.3.2. Onlookers phase

Each onlooker selects a food source according to the probability which is proportional to
the nectar quality. The selecting probability P; is calculated by (8) [53].

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

0.9 x fit(Dy)

hi= max 22 fit(D;) o4 ®
In (8), P; is the fitness value of solution D;, and in this paper, fit calculates the matching
degree SiD. Onlookers select the food source by the roulette mechanism. First, it generates
a random number. If the number is greater than the random number, then the onlooker
will not move. Otherwise, the onlooker will attach itself to the food source and exploit its
neighborhood. The greedy selection strategy is used to update the food source. Obviously,
according to the selection method, the food source with higher fitness will attract more
onlookers.

In the above example, the selecting probabilities are 1, 0.95, 0.87, 0,43, 0.1. For the
third onlooker, first, a random number is generated, which is smaller than Ps, and then
this onlooker will exploit the solution. And the new solution is D} = {da,d;}. The new
matching degree SiD = 1.79 > 1.52, thus the matching solution will be updated. For the
fiftth onlooker, the random number is greater than 0.1, so it does not move. After all the
onlookers finish the search, the new population is shown in Table 3, and the updated
number is indicated in bold.

5.3.3. Scouts phase

If a solution is not updated after limited iterations (set to 5 in the proposed algorithm),
then this food source will be abandoned. The associated employed bee will become a scout
and randomly generate a new food source. For the above example, after the employed bees
and onlookers finish the search, the trial is [1, 3, 3, 4, 1], which did not reach the maximum
value limit, thus the scout will not appear. After all the food sources are explored, the best
matching solution best__s and the optimal matching degree maz_ v will be updated, and
the next iteration will begin. Until now, maz_ v is 2.4781, and the corresponding best__s
is {d},,ds, ds}. In this matching solution, the following three sets of classes are matched:

{e11,e21,e31}, {e12,e22,e32}, and {e13, €23, e33}.

6. Model combination

This section defines the matching model and introduces the approach of transforming the
matching model to the final merged model. First, the meta-model is presented. Second, an
example is given on how to build a matching model from the matching elements obtained
in the model matching step. Then, we introduce how to generate the final merged model
from the matching model. Finally, we prove that our approach satisfies the Generic Merge
Requirements [32].

6.1. Meta-model

The proposed meta-model is given in Figure 5. It consists of the following type definitions
for the objects in the matching model.

1. Matching element. Matching elements are the first-class objects in a matching model.

Each matching element consists of four properties: the Input Mo

17

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

18

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

0..1
Priority ——— Input Model
[
el 0.% l * root Root node
‘ set |
: Input Model
— | Matching Element L pY
prior — Element <]—|
3K = Non-Root Node
non-root
clements| * mefged
prior %
Matching Model ' I ;&
Prior Element Link " Parent Node has
relationship | «)
s
Relationship = Match
T] "*
source 1 st
; e Composition
target —
| ’ 1%
Input Model | Source
Relationship target

1

Figure 5. The proposed meta-model of the matching model

del__Element__Set, the Prior__Input_Model _Element, the Merged Input_Model Ele-
ment and the Prior_FElement Link.

The Input_Model _Element_Set is a set of matched model elements obtained by the
proposed ABCMatch algorithm. By merging the model elements in an Input_Model -
Element_ Set, the Merged_Input Model FElement is generated. Each input model to be
merged is given a different priority number. When conflicts occur during model merging,
the model element with the highest priority is picked, and this element is called the
Prior_Input__Model Element. By searching the direct and indirect parent nodes until
finding a root node of the Prior_Input_Model FElement, the Prior_Element_Link is
obtained, which is used to build relationships of the Merged Input Model Elements
in the matching model.

Relationship. There are three types of relationships in the matching model: Match,
Composition and Input_Model Relationship. The Match is the relationship among
multiple model elements, it represents correspondences among similar/common model
elements from different models. We define Composition as the binary relationship
between matching elements which indicates that a matching element consists of another
matching element. For example, suppose that MA and MB are two matching elements
where A and B are Merged_Input_Model Elements in M A and M B, respectively. If B
is the subclass of A, then a Composition relationship should be built from MB to MA.
As matching is not only between the model elements themselves but also their related
model elements. In addition to source and target matching elements, the relationship
Composition also has a property that records relationship types between input model
elements. The Input Model Relationships are binary relationships between input model
elements, they are defined by the meta-model of input models. In this paper, input

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

models to be merged are UML class diagrams, so Input_Model Relationships are UML
relationships such as generalization, association, etc.

6.2. The model matching process

We define two operators for model matching. The operator match is to find a set of matched
model elements from multiple models built by different collaborators and generate matching
elements. The operator connect is to build relationships between matching elements and
model elements. After operating match and connect in sequential order on a group of input
models, a matching model is generated. In our approach, the models are merged based on
the matching models. The inputs of maich are as follows:
1. Input models: My, Mo, ..., M,.
2. Priority of input models: Pry, Pro,..., Pry,.

Each model element has a priority number the same as the model it belongs to. When
conflicts occur, the model element with the highest priority is picked.

The semantics of match is defined as follows:
The function match((My, Pry),(Ma, Pra),...,(M,, Pr,)) — ME matches n models
My, Ms, ..., M, based on similarity, the detailed description of similarity calculation
is given in Section 4. The function consists of three steps as follows. First, it searches for
the optimal matching solution which contains multiple matching paths of similar model
elements. Second, it generates a merged element for each matching path. When facing
representation conflicts, the representation of the element with the highest priority is
picked. Third, it records the related elements and relationships of the prior element. Finally,
a matching model element MFE is generated.

The semantics of connect is defined as follows:
The function connect(ME1, MEs, ..., ME,) — GM connects n matching elements MF,

MEs, ..., ME, based on original model relationships and generates a matching model GM.

Relationships are added according to three different situations. (1) For each matching element
ME; (1 < i < n), we search its Prior_Element_Link. If the model element in the link
does not exist in GM, then we add it to GM as well as its relationships. (2) If the model
element already exists in a matching element ME; (1 < j < n,i # j) in GM and there is no
relationship between ME; and ME;, then the relationship Composition is added from ME;
to ME;. And its property Input_Model Relationship is set the same as the relationship
in the Prior_Element_Link. (3) If the added model element or the matching element has

related nodes, then we search its element link and repeat the steps in the first two situations.

6.3. An example of the matching model

i

An example of the matching model is shown in Figure 6. It shows three models of a “login’
function in a medical system software. The input models to be merged are in three colors:
deep blue (M), light blue (Ms) and green (Ms3). The matching elements generated are in
red and the Merged Input Model Elements are in blue. We define that the priority order
of these models is M3 > My > M.

As shown in Figure 6, matching elements are generated based on these matching paths.

Take the the matching path d; = {ei1, €21, €31} as an example, “Matching element login” is
generated which consists of three properties, the set {login: M, login: My, login: M3}, the

prior element “login: M3”, and the merged element “Merged_ Input_ Model _Element login”.

As “login” is the root node which does not have a parent node in this example, there is no

19

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

20

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

Input_Meodel_Relationship = generalization

r -id

Matching element login

doctorlogin S ociD -Input_Model_Element_Set |
2 o -Prior_Input_Model_Element
-Input_Model_Element_Set docName fidiess -Prior Element Link |
_Pri +doctarLogin():void e = o |
Prior_Input_Model_Element +login()-void -Merged_Input_Model_Element]
-Prior_Element_Link RinHvol
-Merged_Input_Model Element nurseLogin A
e M;
-nName Merged_Input_Model
Merged__lnput__MOf:!el_ +nurseLogin():void Element_n'ogin 3 i
Element doctorLogin
-ID [
i doctorlLogin _ -Address
-dName T - 1D -name
e . : -name piame | Bl o oy |
+doctorLogin():void Tel -Tel : +login(}:void l
+login():void +logout():void

nurselogin M
Merged_Input_Model_ [-niD 2
Element nurseLogin -nName

-nAddress

niD

nName .

-nAddress ' " fogin Pri

+nurseLogin():void | Prior doctorlogin -ID i
Elameant Element]

dip -Name

-Tel
+login():void
+logout():void

nurselogin
-Input_Model_Element_Set nurseLogin StaffLogin
-Prior_Input_Model_Element
|

Matching element

-Prior_Element_Link -nlD -sID

-Merged_Input_Model_Element 3 -nName -sName
Prior . - l——> -department
+nurseLogin():void - -
Elemen +login():void

+logout():void

Input_Model_Relationship = generalization

Figure 6. An example of the matching model

9

Prior__Element__Link in this matching element. “Merged_ Input_ Model__Element login’
contains all properties and methods of the original models. It is a new “duplicate-free’
model element obtained by merging “login: M;”, “login: My”, and “login: M3”.

Models have relationships, so it is necessary to compare matched elements’ related
nodes which are connected by model relationships. Searching all related nodes of model
elements is time-consuming. To improve the efficiency of this process, we search the prior
element link of each merged element from itself to the root node and compare these nodes
to other matching elements’ merged elements. First, we find out all groups of matched
elements and generate a merged element for each group. Second, the prior element and
prior element link is memorized in each group where the merged element shares the same
link with the prior element. Then, matching elements are generated and relationships
between merged elements are built with the help of the Prior_Element_Links. For example,
in Figure 6, “doctorLogin: M3” is the prior element of “Merged_ Input_ Model FElement
login”. And its Prior_Element__Link is highlighted in orange in Figure 6. As “login: M3” in
the Prior_Element Link exists in the Input Model Element_Set of “Matching element
login”, so it is replaced by “Merged_ Input_ Model _Element login”.

i

6.4. Model merging

We merge model elements and generate a new global model M’ by operating on the
matching model. First, model elements that are not in Prior_FElement Links are deleted.

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

For example, “docLogin: M;” and “login:M;” are deleted while “StaffLogin: M3” is reserved
as it is in the Prior_Element Link of “Matching element doctorLogin”.

Merged_Input_Model_ Merged_Input_Model_
Element doctorLogin Element nurselLogin
-dID b
-dName -nName
-Tel -nAddress
+doctorLogin():void _ +nurselogin():void

Merged_Input_Model_

Element login

-sID

-sName -1D
-department =| -Address
+login():void gllaine
+logout():void TeI

+login():void
+logout():void

Figure 7. The merged model M’ in the example

Second, merged elements are connected to model elements in Prior_Element_Links.

For example, in the Prior_FElement Link of “Matching element doctorLogin”, there is
a generalization relationship which connects “doctorLogin: Ms” with “StaffLogin: M3”, so
we build the same relationship between “Merged_ Input_ Model Element doctorLogin” and
“StaffLogin: M3”. Note that in this step, if the model element in the Prior_Element Link
exists in any matching element’s model element set, it means there is a merged element of
this model element. In that case, we replace this model element with the corresponding
merged element. For example, “Login: M3” is replaced by “Merged_ Input_ Model Element
login”. Finally, input model elements that do not match with other elements are added to
the merged model directly. In this example, the final merged model M’ is given in Figure 7.

The proposed model merging method satisfies the following Generic Merge Require-

ments [32]. Signals used are given in Table 4.

1.

Element preservation. Each element of source models has a corresponding element
in the target model. Formally, for each element e;; € M;(1 < i < n,j > 0), if it
has one or more matching elements in other input models, they will be matched and
generate a merged model element MME), (k > 0) in the matching model ME;, which
will be added into the merged model M’. So e;; must have a corresponding element
¢/ = MME; € M'. If e;; does not have any matching element but it exists in the prior
element link PEL, (¢ > 0), then it is added to M’ and connected with the merged
element MME, or model elements in PELq. If e;; does not have any matching element
and does not exist in any prior element link, it will also be added to M’ with its related
model elements and relations in the source model. So we can conclude that for any
element e;; € M; (1 <i <n,j > 0), there is always a corresponding element egj e M.
Equality preservation. Input elements of source models are mapped to the same
element in merged model M’ if and only if they are equal in the mapping, where equality

21

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

22

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

Table 4. Signals illustration

Signal Meaning
n The number of input models.
M; The i-th input model (1 <17 < n).
Pr; The priority number of model M;.
€ij The j-th model elements in M;(1 <14 < n).
M’ The global model after model merging.
GM The matching model.
ME; The i-th matching element in GM (1 < i < n).
MES,; The set of model elements in matching element MFE;.
PE; The prior model element in matching element MFE;.
MME; The merged model element in matching element ME;.
PFEL; The prior element link in matching element MFE;.
M(e,e') The input model element e has a unique corresponding element ¢’ in M’.

Eq(ei,ej) Input model elements e; and e; are equal in model merging.
R(ei, ;) The relationship between model elements e; and e;.
Ve, p) The value of the property p in the model element e.

in the mapping is transitive. Formally, suppose that e; € M;, e; € M; and Eq(e;, €j),
which means that e; and e; are equal in the process of generating a matching element
ME;. Then e;,e; € MES;. And M(e;,¢’), M(ej,e') where € = MME; € M’'. Suppose
that Eq(e;, e;), Eq(e;, ex), then e;,e; € MES1, M(e;,€)), M(ej,€}) and e;, e, € MES>,
M (e;, €5), M(ex,eh). As e;’s corresponding element €’ is unique in M’, e} = e =¢’. So
M(ej,e’), M(ey,e') which means that equality in the mapping is transitive. If e; and
e; are not equal in the mapping, then there is no such €/, so that e; and e; correspond
to different element in M’.

Relationship preservation. Each input relationship is explicitly in or implied by
target model M’. Formally, for each relationship R(eix, eij) between e;, and e;; in
M;, there are two cases. If one or both of e;;, and e;; have matching elements such
that e;, € MES; or ej, € MES;, then R(e;i, e;;) is recorded in PEL; or PEL;. And
R(eik, eij) will be added to M'. If neither of e;; and e;; has matching element, they will
both be added to M’ as well as the relationship R(e;x, €;;) between them in the last
step of model merging.

Similarity preservation. Elements that are declared to be similar (but not equal)
to one another in mapping from one model to another retain their separate identity
in target model and are related to each other by some relationship. Formally, for each
pair of similar but not equal elements e; € M; and e; € M;. There exist elements €}
and e € M" and M (e;, e;), M(ej,€}). As Eq(e;, e;) is not true, e; and e; correspond
to different elements in M’, so €] # e;-. Suppose R(e;, e;) is the relationship between e;
and e;. As relationship preservation is proved, there must be a relationship R(e;, €})
between ¢} and ¢} in M".

Meta-meta-model constraint satisfaction. There are meta-meta-model conflicts
caused by one-type constraint and no-cycle constraint in model merging, we solve these
problems by appointing a prior model and picking the elements in the prior model
when conflicts occur. As the prior model is a correct UML model that satisfies all
meta-meta-model constraints, the merged model M’ satisfies them too.

Extraneous item prohibition. Other than the elements and relationships specified in
source models, no additional elements or relationships exist in merged model. Formally,
for each model element ¢’ € M’, ¢ = e; € M; if e¢; has no matching element or
¢/ = MME; which is a merged element whose properties and methods all come from

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

elements in MES; € {My, Ma...M,}. For each relationship R(ej,e}) € M’, there exist
ei,ej € M, M(e;, e;), M(ej,€) such that R(ef,e;) = R(e;, ej) € M;.

7. Property preservation. For each element property would be presented only if property
of element is mapped exactly to element in target model. The goal is to prove for each
element e’ € M’, ¢’ has property p if and only if Je; € M;, M (e;, e') and e; has property
p. Suppose that Je; € M;, M(e;,¢’) and e; has property p. If €’ is not a merged element,
then ¢ = e; , so if e has property p, €’ has p too. If € is a merged element in matching
element MFE;, and e; is the prior element PE;, then ¢’ has all properties of e;. If e;
is not PE;, 3PE; € M;, and PE; has the property p’ which is the same property in
different representation with p, such that ¢’ has p’ instead of p. If there is no such p’ ,
then €’ has p. If for each e; € M;(1 <i <n), M(e;,e’) , e; does not have property p,
then e’ does not have property p.

8. Value preference. For each element in merged model M’ its property value is chosen
from mapping elements. Suppose that Je; € M;, M(e;,e’) and e; has property p. For

each element ¢’ € M’ if ¢’ is not a merged element, then €' = ¢;, V(p,e;) = V(p,€).

If ¢/ is a merged element in matching element ME;, and e; is the prior element PFE;,
then V(p,e;) = V(p,€'). If ¢; is not PE;, 3PE; € M; has the property p’ which is the
same property in different representation with p, then V(p', PE;) = V(p/,€’). So for
each ¢/ € M’, p(€’) is chosen from the mapping element corresponding to e’ or the prior
element PE; corresponding to €.

7. Case study

We implement a prototype tool of the proposed approach in Java. The source code of
the tool is available online [54]. The code dictionary and the view of the proposed N-way
model merging tool are given in Figure 8. This tool can be used to merge different versions
of UML class diagrams modeled in the famous Papyrus modeling environment [42]. Users
are supposed to run this tool in the Eclipse IDE. First, users need to move the different

versions of UML class diagrams into the folder named Models in the directory of the tool.

Then, users need to set the relations of the UML versions as the example given in the file
version_r in the Models folder. After refreshing the tool view in Eclipse, users can see
the diagram of the versions and the list of the versions as shown in Figure 8. Users need
to select the versions to be merged by selecting corresponding checkbox. By editing the
priority file following the example in the Models folder, priority can be set to facilitate
conflict prevention based on priority. After that, users need to click the button Merge
Selected Versions to accomplish model merging.

The proposed ABCMatch algorithm is a search-based meta-heuristic algorithm to
search for the optimal matching solution. So we evaluate the algorithm by comparing it
with existing novel meta-heuristic algorithms. The implemented tool merge the models
according to the optimal matching solution. We evaluate the scalability of the tool by
inviting participants to use the tool.

The purpose of the case study is to evaluate the effectiveness of the proposed method in
real-world collaborative modeling. However, existing N-way model merging methods [6, 27,
28, 40] cannot directly process and generate complete UML diagrams as our tool does, they
require a lot of manual processing. In addition, these methods do not provide publically
available tools for us to compare with. EMFStore [4] is one of the most widely-used

23

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

24

Tong Ye, Gongzhe Qiao

e-Informatica Software Engineering Journal, 18 (2024), 240109

version control systems in real-world collaborative modeling and it supports two-way model
merging, so we choose it to compare our tool with.
This section evaluates the proposed approach by answering the following research

questions.

— RQ1. Compared with the existing version control system, is the proposed N-way model

merging approach more effective?

— RQ2. What are users’ views on the usefulness of the proposed N-way model merging
approach compared with the existing version control system?

— RQ3. How is the performance of the proposed ABCMatch algorithm compared with
existing novel meta-heuristic algorithms?

< version3.di &2

Papyrus Modeling
Environment

% Model Explorer ® N Way Model Merge View 5%

=l patient H Inpatients

© + patientlD: String (1] = + healthProblem: String (1]
& + patientName: String [1] E& + admissionDate: String [1]
© + patientAddress: String [1] & + diagnosis: String [1]

+ prescription: String [1]

o

@ + be_hc 0

@ + leave_hospital()

+doctor I | ,, + patient & Outpatients

= doctor
© + doclD: String [1]
& + docName: String [1]
& + docTel: String [1]

& + Date: String [1]

B + healthProblems: String [1]
& + physicianName: String [1]
= + earlyDiagnosis: String [1]

© + docAddress: String [1]

@ + doclogin()

@ Welcome ®a Class Diagram £2
] Properties 2 B
Property Value

& The N-way Model
Merging Tool
- Code
Directory

N Way Model Merge | Upload and Download

Bisting Versions— The view of the Tool

wersionl_ul versionl _u2 versionl _u3 versionl_ud

version2

4N

versionZ_ul version2_uZ version2_u3

N7

version3

Select Versions to Merge
Version
versionl_u4
version2
version2_ul
version2_u2
version2_u3
version3

Automatic conflict handling

[Set Pricrities} Merge Selected Versions

SelectAll] [Deselect AII;i

Figure 8. The code dictionary and the view of the proposed N-way model merging tool

7.1. Experiment

7.1.1. Participants

We selected 30 participants from the College of Computer Science and Technology of Nanjing
University of Aeronautics and Astronautics. The selected participants are graduate students
majoring in software engineering, The participants meet the following requirements:

1. At least 2 years of software modeling experience.

2. Have experience in using the model management tool EMFStore [4].

7.1.2. Modeling tasks

We designed the following two tasks with different workloads:

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

Task 1. Use the UML class diagram to model the following information in a library
information system: (1) system users such as administrators, teachers, and students. (2)
system functions available to each type of user. Require a minimum of 40 classes in the
submitted model.

Task 2. Use the UML class diagram to model the following information in a common
hospital information system: (1) departments, (2) medical staff, (3) system functions available
to medical staff, (4) wards, (5) patients, (6) system functions available to patients. Require
a minimum of 80 classes in the submitted model.

We divided the participants into two groups, Group 1 and Group 2. Based on the
information provided by the mentors of the participating students, we tried to make the
modeling levels of the two groups as equal as possible. Group 1 and Group 2 were the
experiment group and the control group, respectively, and were supposed to work on the
same tasks with the N-way model merging tool developed in this paper and EMFStore [4],
respectively. We asked participants to record the following information during the experiment:
(1) the time taken to complete the task, (2) the number of model merges performed, (3) the
number of conflicts, and (4) the total time taken for resolving conflicts, including the time
taken for group discussion, the time taken for modifying conflicting models and the time
taken for remerging models using the tool. In addition, we asked participants in the same
group to work together in the same period of time each day for modeling, model merging,
and group discussion to facilitate time consumption statistics.

7.1.3. Questionnaire

To compare participants’ views of the tools, we designed the following questionnaire:

1. How useful is the model merging function supported by the tool in collaborative
modeling?
A. Very useful; B. Useful; C. A little useful; D. Not useful.

2. How useful is the conflict handling function supported by the tool in collaborative
modeling?
A. Very useful; B. Useful; C. A little useful; D. Not useful.

3. Which tool do you prefer as the model merging tool for collaborative modeling?
A. The N-way model merging tool; B. EMFStore.

7.1.4. Evaluation of ABCMatch

In recent years, numerous novel meta-heuristic algorithms have been proposed to solve
optimization problems in various fields. However, most of these algorithms are not suitable
for solving the N-way model matching problem. This is because in the N-way model
matching problem, each matching solution consists of multiple matching paths, and each
matching path contains a set of UML classes. When using meta-heuristic algorithms to
solve the N-way model matching problem, the locations of different agents are supposed to
represent different matching solutions. However, most of the existing novel meta-heuristic
algorithms update the locations of agents through complex numerical calculations, which
cannot represent the update of the matching paths and the UML classes contained in
matching paths in each model matching solution. Therefore, this paper cannot compare
ABCMatch with the latest meta-heuristic algorithms which use complex numerical calcula-
tions to update locations of agents, such as Sparrow Search Algorithm (SSA) [21], Honey
Badger Aptimization (HBA) [23], and Northern Goshawk Optimization (NGO) [24].

25

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

26

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

As a meta-heuristic algorithm, the reason why the ABC algorithm can be improved to
solve the N-way model matching problem is that ABC updates the locations of agents by
searching adjacent locations with higher fitness without complex numerical calculations.
Therefore, this paper can improve ABC and propose ABCMatch to solve the N-way model
matching problem. ABCMatch regards two matching solutions with only one matching path
to be different as neighbors when updating the locations of agents. We implemented the
ABCMatch algorithm in Eclipse using Java. The parameter configuration of the algorithm
is shown in Table 5.

Table 5. Parameter configuration

Algorithms Description Parameters Value
Population size PG 90
GA[15] Crossover rate PC 0.9
Mutation rate PM 0.01
Population size PE 90
EHO[20] Number of clans in elephant population NClan 9
Number of elephants in each clan Nc 10
Random number in the separating process R [0, 1]
Population size PA 90
Number of employed bees Ne 30
Number of onlookers No 30
ABCMatch Number of scouts Ns 30

Initial number of matching paths

in each matching solution S 10

In order to evaluate the performance of the proposed ABCMatch algorithm by comparing
it with existing novel meta-heuristic algorithms in the literature, we analyzed 23 existing
state-of-the-art meta-heuristic algorithms to find the algorithms that can be used to solve
the N-way model matching problem. These 23 algorithms are Genetic Algorithm (GA) [15],
Gray Wolf Optimization (GWO) [16], Symbiotic Organisms Search (SOS) [17], Whale
Optimization Algorithm (WOA) [18], Farmland Fertility Algorithm (FFA) [19],Elephant
Herding Optimization (EHO) [20], Sparrow Search Algorithm (SSA) [21], Tunicate Swarm
Algorithm (TSA) [22], Honey Badger Optimization (HBA) [23], and Northern Goshawk
Optimization (NGO) [24] Ant Colony Optimization (ACO) [55], Particle Swarm Optimiza-
tion (PSO) [56], Invasive Weed Optimization (IWO) [57], Firefly Algorithm (FA) [58], Fruit
Fly Optimization (FFO) [59], Flower Pollination Algorithm (FPA) [60], Moth-Flame Opti-
mization (MFO) [61], Crow Search Algorithm (CSA) [62], Dragonfly algorithm (DA) [63],
Grasshopper Optimization Algorithm (GOA) [64], Spotted Hyena Optimization (SHO) [65],
Emperor Penguin Optimization (EPO) [66], Butterfly Optimization Algorithm (BOA) [67].
Among the above algorithms, only GA[15] and EHO[20] do not need to update the positions
of agents through complex numerical calculations, so they can be used to solve the N-way
model matching problem.

Genetic algorithm (GA) [15]: GA is a classic meta-heuristic algorithm inspired by natural
evolution theory. GA simulates the phenomena of replication, crossover and mutation
in natural selection and genetics. Starting from any initial population, through random
selection, crossover and mutation operations, it generates a group of individuals more
suitable for the environment, so that the population evolves to a region with higher
adaptability in the search space, and continues to reproduce and evolve from generation to
generation, and finally converges to a group of individuals most suitable for the environment,

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

so as to obtain the optimal solution of the problem. To compare ABCMatch with GA, we
implemented GA using Java in Eclipse, and searched for the optimal solution of the N-way
model matching problem by selecting, crossing and mutating the matching paths in the
model matching solutions. The parameter configuration of GA implemented in this paper
is shown in Table 5.

Elephant Herding Optimization (EHO) [20]: EHO is an advanced swarm intelligence
optimization algorithm that has been applied to optimization problems in many fields.
This algorithm mainly simulates the herding behavior of elephant groups. In nature, an
elephant group can be divided into multiple clans, and each clan has a matriarch as the
leader. Elephants belonging to different clans live under the leadership of the matriarch
(the best position in the clan). EHO has two operations: clan updating and separating.
In the clan updating operation, the position of each elephant is updated according to its
position and the position of the matriarch. In the separating operation, elephants with the
worst finesses will be moved to new locations to increase the global search ability of the
population. To compare ABCMatch with EHO, we implemented EHO in Eclipse using
Java. In the implemented EHO algorithm, we regarded multiple sets of model matching
solutions as multiple clans in an elephant group and took the best matching solution in
each set as the matriarch in each group. For separating, new matching paths were randomly
generated to replace the matching solutions with poor matching degrees. The parameter
configuration of the EHO algorithm implemented in this paper is shown in Table 5.

Table 6. Details of the data sets

Data sets Number of Number of Number of class diagrams
class diagrams matching paths that can be matched
Class diagrams ModelSet1 332 25 233
of the library ModelSet2 380 28 271
information ModelSet3 417 32 300
system (Task 1) ModelSet4 422 32 304
ModelSet5 426 33 308
Class diagrams ModelSet6 701 60 589
of the hospital ~ ModelSet7 785 69 651
information ModelSet8 803 73 702
system (Task 2) ModelSet9 812 74 710
ModelSet10 820 76 718

Data sets. In order to evaluate the performance of ABCMatch in solving the N-way
model matching problem, this paper uses the class diagrams of the library information
system and the hospital information system established by the participants in Task 1 and
Task 2 as the experimental data sets, and compared the ABCMatch algorithm proposed
in this paper with Genetic algorithm (GA) [15] and Elephant Herding Optimization
(EHO) [20]. The details of the data sets are shown in Table 6. In Task 1, Group 1 conducted
a total number of 13 times of model merging, and we randomly selected five times among
them to collect the models to be merged. The selected models are from the first, the
third, the tenth, the eleventh, and the thirteenth times of model merging and we named
them as ModelSetl to ModelSet5 in sequence as the experimental data sets. In Task 2,
Group 1 conducted a total number of 29 times of model merging. We randomly selected the
models from the fourth, the tenth, the thirteenth, the twenty-second and the twenty-ninth

27

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

28

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

times of model merging, and named them as ModelSet6 to ModelSet10 in sequence as the
experimental data sets.

Table 6 presents the details of each model set, including the total number of class
diagrams in the model set, the number of matching paths in the model set, and the total
number of class diagrams that can be matched in the model set. In order to avoid the
statistics bias, the results of each algorithm are averaged over 30 runs.

Experimental environment. The experiment was performed on 64-bit Windows
desktop computer with the following configuration: 3.19 GHz CPU and 16 GB RAM.

7.2. Results and discussion

RQ1.Compared with existing version control system, is the proposed N-way model merging
approach more effective?

Table 7. Experimental data statistics of the two groups

Group 1 Group 2
Total Time Taken 12 h (6 days, 2 hours per day) 14 h (7 days, 2 hours per day)
Total Number of Model 13 131
Merging
Total Number of Conflicts 92 96
Task 1 Total Time Taken for Total: 3 h 16 min Total: 5 h 13 min
Resovling Conflicts Group Discussion: 1 h 50 min Group Discussion: 2 h 10 min
Modeling: 1 h 10 min Modeling: 1 h 15 min
Merging by Tool: 16 min Merging by Tool: 1 h 48 min
Group 1 Group 2
Total Time Taken 24 hours (12 days, 2 hours per 30 hours (15 days, 2 hours per
day) day)
Total Number of Model 29 307
Merging
Task 2 Total Number of Conflicts 284 302
Total Time Taken for Total: 9 h 22 min Total: 15 h 51 min
Resovling Conflicts Group Discussion: 5 h 15 min Group Discussion: 7 h 20 min
Modeling: 3 h 10 min Modeling: 4 h 18 min
Merging by Tool: 57 min Merging by Tool: 4 h 13 min

Two groups of participants completed their tasks and submitted the models and related
experimental records. The models built by Group 1 have 43 classes (Task 1) and 82
classes (Task 2), respectively, and the models built by Group 2 have 44 classes (Task 1)
and 83 classes (Task 2), respectively. As we expected, the complexity of models built by
the two groups is relatively similar due to our design when grouping participants. The
statistical results of the experiment are given in Table 7. The results show that Group 1
(using the N-way model merging tool) spent less time on both tasks than Group 2 (using
EMFStore [4]). And the time consumption gap is greater in the second task. The reason is
that Group 2 spent more time on merging models using EMFStore when resolving conflicts,
taking 1 hour and 48 minutes in Task 1 and 4 hours and 13 minutes in Task 2. This is
much more than that of Group 1 which spent only 16 minutes (Task 1) and 57 minutes
(Task 2) using the proposed N-way model merging tool.

The essential reason why our tool is more effective than EMFStore [4] is that EMFStore
cannot support N-way model merging. Each group member needs to submit the model
one by one. When conflicts occur, each member needs to wait for others to deal with the

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

conflicts immediately, and only after resolving the conflicts can the next merge be carried
out. Unlike EMFStore, our tool supports N-way model merging thus saving the extra
waiting time of submitting the model one by one. The results show the applicability of our
approach in merging real-world collaborative models.

10 ,
0 12
8 10
7
26 = 8
[. l=}
g ° &6
~ 4
3 4
1
0 L] . —
Very useful Useful A little useful Not useful Very useful Useful A little useful Not useful
B Group 1 Group 2 B Group | Group 2
(using the N-way model merging tool) (using EMFStore) (using the N-way model merging tool) (using EMFStore)
(a) Comparison of the merging function between the (b) Comparison of the conflict handling function between
N-way model merging tool and EMFStore the N-way model merging tool and EMFStore
4 people

The N-way model
26 people merging tool

EMFStore

(c) Comparison of user favoritism between the N-way model merging tool and EMFStore

Figure 9. Statistics on the results of the answers to the questions in the questionnaire

RQ2. What are users’ views on the usefulness of the proposed N -way model merging
approach compared with the existing version control system?

According to the statistical results of questionnaires given in Figure 9, most participants
think that the N-way model merging tool proposed in this paper is more useful than the
existing version control system EMFStore [4] in model merging and conflict handling and
are more willing to choose our tool as the model merging tool.

As shown in Figure 9(a), most of the participants (14 out of 15) in Group 1 (using the
N-way model merging tool) stated that the N-way model merging tool was very useful
or useful. And only one participant stated that the N-way model merging tool is a little
useful. Compared with the N-way model merging tool, most participants in Group 2 (using
EMFStore) found that the model merging function provided by EMFStore was not as useful
as they had expected. And only a few participants (3 out of 15) stated that EMFStore’s
model merging function was useful. The results show that most participants agreed that the
N-way model merging tool is useful and EMFStore is not useful enough. This is because
a large number of models were required to be merged in the experiment. Unlike the N-way
model merging tool which can merge a large number of models at one time, EMFStore
requires more manual efforts to merge these models.

29

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

30

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

As shown in Figure 9(b), most of the participants (14 out of 15) using the N-way model
merging tool stated that the conflict handling function provided by the N-way model
merging tool was very useful or useful. In contrast, only a few participants (4 out of 15)
felt that the conflict handling function of EMFStore was useful or very useful. This is
because unlike EMFStore, the N-way model merging tool supports to show all the conflicts
between the models to be merged at one time, which greatly improves the efficiency of
conflict handling.

Figure 9(c) shows the comparison results of participants’ favoritism for the N-way
model merging tool and EMFStore. Most of the participants (26 of 30) prefer to use the
N-way model merging tool in collaborative modeling. They stated that the N-way model
merging tool can improve the efficiency of model merging when there are a large number
of models to be merged. Other participants (4 out of 30) chose EMFStore because they
were used to using EMFStore to manage their models.

RQ3. How is the performance of the proposed ABCMatch algorithm compared with
existing novel meta-heuristic algorithms?

Table 8 shows the model matching accuracy and the time cost of ABCMatch, GA [15],
and EHO [20] when the maximum model matching degree tends to be stable. The calculation
method of model matching accuracy is shown in Equation (9). Where Neorrect path is the
number of the correct matching paths in a matching solution, and Nigtal path Tepresents
the total number of paths in a matching solution. A matching path is a correct matching
path if and only if all the UML classes in this matching path are different versions of the
same UML class.

N,
Accuracy = —correct_path 1 00% (9)
Ntotal_path

Table 8. Comparison of the model matching results between ABCMatch, GA [15], and EHO [20]

Data sets ABCMatch GA[15] EHO[20]
Accuracy [%] Time [min] Accuracy [%] Time [min] Accuracy [%] Time(min)
ModelSet1 98.0341 0.9687 95.6442 1.4283 96.5336 1.2557
ModelSet2 96.8774 0.9841 95.3084 1.4392 95.4013 1.2892
ModelSet3 97.8759 1.0259 94.2405 1.5870 96.7265 1.3066
ModelSet4 98.1253 1.0373 94.8720 1.5932 96.5449 1.3592
ModelSetb 96.9697 1.0429 93.3201 1.6079 95.1102 1.3623
ModelSet6 97.2340 1.8214 95.1853 3.1047 94.7228 2.9968
ModelSet7 98.0599 1.9028 94.9275 3.2824 96.0849 3.0294
ModelSet8 97.0538 2.0215 96.0284 3.2879 95.3972 3.0851
ModelSet9 98.1667 2.0250 95.0828 3.2901 95.9601 3.0883
ModelSet10 97.8613 2.0316 93.9238 3.2962 94.9730 3.0935

As shown in Table 8, for the five model sets ModelSet1-ModelSet5 from Task 1, the
average value of the maximum model matching accuracy that GA and EHO can achieve
when they tend to be stable are 94.6770% and 96.0633%, respectively. Compared with
GA and EHO, the ABCMatch algorithm proposed in this paper can achieve a higher
model matching accuracy of 97.5765% in a shorter time. For the five model sets Mod-
elSet6-ModelSet10 from Task 2, the average value of the maximum accuracy that GA and
EHO can achieve when they tend to be stable are 95.0296% and 95.4276%, respectively.
Compared with GA and EHO, ABCMatch can achieve a higher model matching accuracy
of 97.6751% in a shorter time. For all data sets in the experiment, ABCMatch has better

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

performance than GA and EHO. The average accuracy of model matching has increased by
2.7725% and 1.8804% compared with GA and EHO, respectively. And the average time cost

has decreased by 0.9056 mins and 0.7005 mins compared with GA and EHO, respectively.

The reason why ABCMatch performs better than EHO and GA is that ABCMatch can
maintain a good balance between global search and local search through the cooperation
of the employed bees, onlookers, and scouts. Unlike ABCMatch, GA has poor local search
ability due to its randomness, so its performance is not as good as ABCMatch. Although
EHO has a strong local search ability, its performance is not as good as the ABCMactch
algorithm because of its poor global search ability. This problem makes it easy to fall into
local optimum.

7.3. Threats to validity

In this section, we analyze the threats to the validity of the case study using the method [68]

proposed by Wohlin et al.

1. Internal validity. The internal threat is that the modeling level of the participants
could affect the results of the experiment. We set the modeling level that the participants
need to achieve and tried to make the modeling levels of the two groups as equal as
possible to relieve this threat.

2. External validity. The external validity means that the conclusion drawn from existing
examples in the experimental data set is also valid for out-of-set examples [68]. Our
experiments assume that the collaborative modeling is performed by a large group of
people in the same period of time together. In this case, our approach is more effective
than existing version control tools. We acknowledge that existing version control tools
are more effective in the case that there is no need for a large group of users to resolve
conflicts and merge models together during the same period of time.

The limited sample size poses a threat to the validity of our experimental results. Due to
the limited time and manpower, in the current research work, only two group of participants
were involved in the experiment. In the future, we will invite external practitioners and
researchers to use the proposed method and continuously improve it.

To mitigate the threats to external validity brought by the particular tasks delivered in
the experiment, we had selected two common and representative models of different scales
in different fields. The selected models are similar to other common information systems in
the real world.

3. Construct validity. The construct validity reflects the degree to which the case study

truly represents what needs to be studied according to the research questions [68].

The two research questions of this paper are the effectiveness and users’ views on the
usefulness of the proposed approach compared with the existing version control tool. For
the first question, we let two different groups (an experiment group and a control group)
work on the same tasks with the two different approaches. For the second question,

we obtained users’ views on the usefulness of the proposed approach by questionnaire.

So this case study totally represents what needs to be studied according to the two
research questions.

4. Conclusion validity. As the conclusions of case studies are usually drawn from several
cases, the results suffer from the threat to conclusion validity [68]. In this case study,
we target to simulate the real-world collaborative modeling process to demonstrate
the effectiveness of the proposed approach compared with the existing version control

31

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

32

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

system. However, this requires much manual modeling effort and time consumption. So
it is difficult to provide a large number of examples.

8. Conclusion and future works

In this paper, we propose a novel N-way model merging approach and accompanying
prototype tool for collaborative modeling. Our approach takes a set of model variants as
inputs and generates a single global merged model by model comparison, model matching
and model combination. For model comparison, this paper proposes a new calculation
method for calculating the similarity of a group of model elements. For the most challenging
step, matching, which is an NP-hard problem, we propose a novel N-way matching algorithm
ABCMatch. Model combination is implemented by building a matching model which is
then transformed into the merged model. Unlike other approaches, we reshuffle elements
from distinct chains by extracting the prior element link and store it in matching models
rather than breaking the chain into pieces. Theoretical analysis is given to prove that our
approach satisfies the Generic Merge Requirements. A case study is conducted and the
experiment results corroborate the effectiveness of the proposed approach. Compared with
existing novel meta-heuristic algorithms GA and EHO which can be used to solve the
N-way model matching problem, the proposed ABCMatch algorithm can obtain more
accurate model matching solutions in a shorter time. The average model matching accuracy
of ABCMatch is 2.7725% higher than GA and 1.8804% higher than EHO.

At present, the N-way model merging method proposed in this paper is only applicable
to merging UML class diagrams and cannot be used to merge other types of models, such
as UML sequence diagrams. This is because the model comparison method, the model
matching method and the model combination method used in this paper are specially
designed for UML class diagrams. In the future, we will extend the model merging method
proposed in this paper to support the merging of other types of UML models.

References

[1] T. Stahl, M. Vélter, J. Bettin, A. Haase, and S. Helsen, Model-driven software development
— Technology, engineering, management. Hoboken, NJ, USA: John Wiley and Sons, Inc., 2006.

[2] M. Franzago, D.D. Ruscio, I. Malavolta, and H. Muccini, “Collaborative model-driven software
engineering: A classification framework and a research map,” IEEE Transactions on Software
Engineering, 2017, pp. 1-1.

[3] J.E. Rumbaugh, I. Jacobson, and G. Booch, The unified modeling language reference manual.
Reading, MA, USA: Addison Wesley Longman, Inc., 1999.

[4] M. Koegel and J. Helming, “EMFStore: a model repository for EMF models,” in Proceedings
of the 32nd ACM/IEEFE International Conference on Software Engineering, Vol. 2, 2010,
pp. 307-308.

[5] E. Stepper, “CDO model repository,” 2010.

[6] J. Rubin and M. Chechik, “n-way model merging,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering. Association for Computing Machinery, 2013,
p. 301-311.

[7] F.S. Gharehchopogh, “Advances in tree seed algorithm: A comprehensive survey,” Archives of
Computational Methods in Engineering, Vol. 29, 2022, pp. 3281-3304.

[8] H. Mohammadzadeh and F.S. Gharehchopogh, “A multi-agent system based for solving
high-dimensional optimization problems: A case study on email spam detection,” International
Journal of Communication Systems, Vol. 34, No. 3, 2021, p. e4670.

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

[9]

F.S. Gharehchopogh, I. Maleki, and Z.A. Dizaji, “Chaotic vortex search algorithm: Meta-
heuristic algorithm for feature selection,” Ewvolutionary Intelligence, Vol. 15, No. 3, 2022,
pp. 1777-1808.

T.S. Naseri and F.S. Gharehchopogh, “A feature selection based on the farmland fertility algo-
rithm for improved intrusion detection systems,” Journal of Network and Systems Management,
Vol. 30, No. 3, 2022, p. 40.

H. Mohammadzadeh and F.S. Gharehchopogh, “Feature selection with binary symbiotic
organisms search algorithm for email spam detection,” International Journal of Information
Technology and Decision Making, Vol. 20, No. 01, 2021, pp. 469-515.

F.S. Gharehchopogh, “Quantum-inspired metaheuristic algorithms: Comprehensive survey and
classification,” Artificial Intelligence Review, 2022, pp. 1-65.

S. Ghafori and F.S. Gharehchopogh, “Advances in spotted hyena optimizer: A comprehensive
survey,” Archives of Computational Methods in Engineering, 2021, pp. 1-22.

D. Karaboga, “Artificial bee colony algorithm,” Scholarpedia, Vol. 5, No. 3, 2010, p. 6915.

S. Katoch, S.S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and
future,” Multimedia Tools and Applications, Vol. 80, 2021, pp. 8091-8126.

S. Mirjalili, S.M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in Engineering
Software, Vol. 69, 2014, pp. 46-61.

M.Y. Cheng and D. Prayogo, “Symbiotic organisms search: A new metaheuristic optimization
algorithm,” Computers and Structures, Vol. 139, 2014, pp. 98-112.

S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in Engineering
Software, Vol. 95, 2016, pp. 51-67.

H. Shayanfar and F.S. Gharehchopogh, “Farmland fertility: A new metaheuristic algorithm for
solving continuous optimization problems,” Applied Soft Computing, Vol. 71, 2018, pp. 728-746.
G.G. Wang, S. Deb, and L.d.S. Coelho, “Elephant herding optimization,” in 3rd International
Symposium on Computational and Business Intelligence (ISCBI). IEEE, 2015, pp. 1-5.

J. Xue and B. Shen, “A novel swarm intelligence optimization approach: Sparrow search
algorithm,” Systems Science and Control Engineering, Vol. 8, No. 1, 2020, pp. 22-34.

S. Kaur, L.K. Awasthi, A. Sangal, and G. Dhiman, “Tunicate swarm algorithm: A new
bio-inspired based metaheuristic paradigm for global optimization,” Engineering Applications
of Artificial Intelligence, Vol. 90, 2020, p. 103541.

F.A. Hashim, E.H. Houssein, K. Hussain, M.S. Mabrouk, and W. Al-Atabany, “Honey Badger
Algorithm: New metaheuristic algorithm for solving optimization problems,” Mathematics and
Computers in Simulation, Vol. 192, 2022, pp. 84-110.

M. Dehghani, S. Hubdlovsky, and P. Trojovsky, “Northern goshawk optimization: A new
swarm-based algorithm for solving optimization problems,” IEEE Access, Vol. 9, 2021,
pp- 162 059-162 080.

F.S. Gharehchopogh, M. Namazi, L.. Ebrahimi, and B. Abdollahzadeh, “Advances in sparrow
search algorithm: A comprehensive survey,” Archives of Computational Methods in Engineering,
Vol. 30, No. 1, 2023, pp. 427-455.

Y. Huo, Y. Zhuang, J. Gu, S. Ni, and Y. Xue, “Discrete ghest-guided artificial bee colony
algorithm for cloud service composition,” Applied Intelligence, Vol. 42, 2015, pp. 661-678.
W.K.G. Assuncgéo, S.R. Vergilio, and R.E. Lopez-Herrejon, “Discovering software architectures
with search-based merge of UML model variants,” in ICSR, 2017.

D. Reuling, M. Lochau, and U. Kelter, “From imprecise N-way model matching to precise
N-way model merging.” The Journal of Object Technology, Vol. 18, No. 2, 2019.

M. Koegel, H. Naughton, J. Helming, and M. Herrmannsdoerfer, “Collaborative model merg-
ing,” in Proceedings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion. Association for Computing
Machinery, 2010, p. 27-34.

H.K. Dam, A. Reder, and A. Egyed, “Inconsistency resolution in merging versions of architec-
tural models,” in IEEE/IFIP Conference on Software Architecture, 2014, pp. 153-162.

33

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

34

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

[31]

P. Buneman, S. Davidson, and A. Kosky, “Theoretical aspects of schema merging,” in Inter-
national Conference on Extending Database Technology: Advances in Database Technology,
1992.

R. Pottinger and P.A. Bernstein, “Merging models based on given correspondences,” in
Proceedings VLDB Conference, 2003, pp. 862-873.

M. Sharbaf and B. Zamani, “Configurable three-way model merging,” Software: Practice and
Ezperience, Vol. 50, No. 8, 2020.

C. Thao and E.V. Munson, “Using versioned trees, change detection and node identity for
three-way XML merging,” Computer Science — Research and Development, Vol. 34, No. 1,
2019, pp. 3-16.

C. Debreceni, I. Rath, D. Varro, X. De Carlos, X. Mendialdua et al., “Automated model
merge by design space exploration,” in Fundamental Approaches to Software Engineering, 2016,
pp. 104-121.

F. Schwagerl, S. Uhrig, and B. Westfechtel, “Model-based tool support for consistent three-way
merging of EMF models,” ACME, 2013, p. 2.

A. Schultheifl, P.M. Bittner, L. Grunske, T. Thiim, and T. Kehrer, “Scalable N-way model
matching using multi-dimensional search trees,” in ACM/IEEE 2/th International Conference
on Model Driven Engineering Languages and Systems (MODELS), 2021, pp. 1-12.

M.S. Kasaei, M. Sharbaf, and B. Zamani, “Towards a formalism for specifying N-way model
merging rules,” in 27th International Computer Conference, Computer Society of Iran (CSICC),
2022, pp. 1-7.

M. Boubakir and A. Chaoui, “A pairwise approach for model merging,” in Modelling and
Implementation of Complex Systems, S. Chikhi, A. Amine, A. Chaoui, M.K. Kholladi, and
D.E. Saidouni, Eds. Cham: Springer International Publishing, 2016, pp. 327-340.

Y. Jiang, S. Wang, K. Fu, W. Zhang, and H. Zhao, “A collaborative conceptual modeling
tool based on stigmergy mechanism,” in Proceedings of the 8th Asia-Pacific Symposium on
Internetware, 2016, pp. 11-18.

J. Martinez, T. Ziadi, T.F. Bissyande, J. Klein, and Y.L. Traon, “Automating the extraction
of model-based software product lines from model variants,” 2015, pp. 396—406.

A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard et al., “Papyrus UML: An
open source toolset for MDA,” in Proc. of the Fifth European Conference on Model-Driven
Architecture Foundations and Applications (ECMDA-FA 2009). Citeseer, 2009, pp. 1-4.

F.S. Gharehchopogh, M.H. Nadimi-Shahraki, S. Barshandeh, B. Abdollahzadeh, and H. Zamani,
“CQFFA: A Chaotic Quasi-Oppositional Farmland Fertility Algorithm for Solving Engineering
Optimization Problems,” Journal of Bionic Engineering, Vol. 20, No. 1, 2023, pp. 158-183.
F.S. Gharehchopogh, “An improved tunicate swarm algorithm with best-random mutation
strategy for global optimization problems,” Journal of Bionic Engineering, Vol. 19, No. 4,
2022, pp. 1177-1202.

B. Abdollahzadeh and F.S. Gharehchopogh, “A multi-objective optimization algorithm
for feature selection problems,” FEngineering with Computers, Vol. 38, No. Suppl 3, 2022,
pp. 1845-1863.

Saban Oztiirk, R. Ahmad, and N. Akhtar, “Variants of Artificial Bee Colony algorithm and its
applications in medical image processing,” Applied Soft Computing, Vol. 97, 2020, p. 106799.
U. Mansoor, M. Kessentini, P. Langer, M. Wimmer, S. Bechikh et al., “MOMM: Multi-objective
model merging,” Journal of Systems and Software, Vol. 103, 2015, pp. 423-439.

A. Anwar, A. Benelallam, M. Nassar, and B. Coulette, “A graphical specification of model
composition with triple graph grammars,” in Model-Based Methodologies for Pervasive and
Embedded Software, Vol. 7706, 2012, pp. 1-18.

A. Koshima and V. Englebert, “RuCORD: Rule-based composite operation recovering and
detection to support cooperative edition of (meta)models,” in 2015 3rd International Conference
on Model-Driven Engineering and Software Development (MODELSWARD), 2015, pp. 1-7.
H. Chong, R. Zhang, and Z. Qin, “Composite-based conflict resolution in merging versions of
UML models,” in 17th IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2016, pp. 127-132.

)

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

[51]
[52]

[53]

[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]

[63]

[64]

J. Rubin and M. Chechik, “Combining related products into product lines,” in Fundamental
Approaches to Software Engineering, 2012, pp. 285-300.

P. Jaccard, “The distribution of the flora in the alpine zone. 1,” New Phytologist, Vol. 11,
No. 2, 1912, pp. 37-50.

D. Karaboga and B. Gorkemli, “A combinatorial artificial bee colony algorithm for traveling
salesman problem,” in International Symposium on Innovations in Intelligent Systems and
Applications, 2011, pp. 50-53.

“N Way Model Merging Tool,” https://github.com/YETONG1219/NWay, [accessed 7 Nov.
2023).

M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Computational
Intelligence Magazine, Vol. 1, No. 4, 2006, pp. 28-39.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 —
International Conference on Neural Networks, Vol. 4. IEEE, 1995, pp. 1942-1948.

S. Karimkashi and A.A. Kishk, “Invasive weed optimization and its features in electromagnet-
ics,” IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 2010, pp. 1269-1278.
X.S. Yang and X. He, “Firefly algorithm: Recent advances and applications,” International
Journal of Swarm Intelligence, Vol. 1, No. 1, 2013, pp. 36-50.

B. Xing, W.J. Gao, B. Xing, and W.J. Gao, “Fruit fly optimization algorithm,” Innovative
Computational Intelligence: A Rough Guide to 134 Clever Algorithms, 2014, pp. 167-170.
X.S. Yang, M. Karamanoglu, and X. He, “Flower pollination algorithm: A novel approach for
multiobjective optimization,” Engineering Optimization, Vol. 46, No. 9, 2014, pp. 1222-1237.
S. Mirjalili, “Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm,”
Knowledge-based Systems, Vol. 89, 2015, pp. 228-249.

A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization
problems: Crow search algorithm,” Computers and Structures, Vol. 169, 2016, pp. 1-12.

S. Mirjalili, “Dragonfly algorithm: A new meta-heuristic optimization technique for solving
single-objective, discrete, and multi-objective problems,” Neural Computing and Applications,
Vol. 27, 2016, pp. 1053-1073.

S.Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, and 1. Aljarah, “Grasshopper optimization
algorithm for multi-objective optimization problems,” Applied Intelligence, Vol. 48, 2018,
pp. 805-820.

G. Dhiman and V. Kumar, “Multi-objective spotted hyena optimizer: A multi-objective
optimization algorithm for engineering problems,” Knowledge-Based Systems, Vol. 150, 2018,
pp. 175-197.

G. Dhiman and V. Kumar, “Emperor penguin optimizer: A bio-inspired algorithm for engi-
neering problems,” Knowledge-Based Systems, Vol. 159, 2018, pp. 20-50.

S. Arora and S. Singh, “Butterfly optimization algorithm: A novel approach for global opti-
mization,” Soft Computing, Vol. 23, 2019, pp. 715-734.

C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell et al., Experimentation in software
engineering: An introduction. Kluwer Academic Publishers, 2000.

35

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/
https://github.com/YETONG1219/NWay

	An N-Way Model Merging Approach Based on Artificial Bee Colony Algorithm
	Introduction
	Related work
	Two-way and three-way model merging
	N-way model merging
	Operation-based merging approach
	Conflicts resolving

	Overview of the proposed approach
	Model comparison
	Calculation of model matching degree
	An example of model comparison

	The ABCMatch algorithm
	The problem of model matching
	Encoding
	Initialization

	Iteration process
	Employed bees phase
	Onlookers phase
	Scouts phase

	Model combination
	Meta-model
	The model matching process
	An example of the matching model
	Model merging

	Case study
	Experiment
	Participants
	Modeling tasks
	Questionnaire
	Evaluation of ABCMatch

	Results and discussion
	Threats to validity

	Conclusion and future works
	References

