Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this paper is to provide a peridynamic (PD) model for the prediction of the viscoelastic creep deformation and failure model. The viscoelastic characteristic consists of several stages, namely primary creep, secondary creep, tertiary creep and fracture. A non- linear viscoelastic creep equation based on the internal state variable (ISV) theory covering four creep stages and PD equations are used. The viscoelastic equation is inserted into the PD equation to derive a PD model with two time parameters, i.e., numerical time and vis- coelastic real time. The parameters of the viscoelastic equation are analyzed and optimized. A comparison between numerical and experimental data is performed to validate this PD model. The new PD model for nonlinear viscoelastic creep behavior is confirmed by an ac- ceptable similarity between the numerical and experimental creep strain curves with an error of 15.85%. The nonlinearity of the experimental and numerical data is sufficiently similar as the error between the experimental and numerical curves of the secondary stage strain rate against the load is 21.83%. The factors for the errors are discussed and the variation of the constants in the nonlinear viscoelastic model is also investigated.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
579--591
Opis fizyczny
Bibliogr. 24 poz., rys. tab.
Twórcy
autor
- Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Malaysia
- Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Malaysia
autor
- Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Malaysia
autor
- Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Malaysia
Bibliografia
- 1. Agwai A., Guven I., Madenci E., 2011, Crack propagation in multilayer thin-film structures of electronic packages using the peridynamic theory, Microelectronics Reliability, 51, 12, 2298-2305.
- 2. Aurbertin M., Gill D.E., Ladanyi B., 1991, An internal variable model for the creep of rocksalt, Rock Mechanics and Rock Engineering, 24, 81-97.
- 3. Brandner S., Becker T., Jekle M., 2019, Classification of starch-gluten networks into a viscoelastic liquid or solid, based on rheological aspects – A review, International Journal of Biological Macromolecules, 136, 1018-1025.
- 4. Drozdov A.D., 2010, Creep rupture and viscoelastoplasticity of polypropylene, Engineering Fracture Mechanics, 77, 12, 2277-2293.
- 5. Foster J.T., Silling S.A., Chen W.W., 2009, State based peridynamic modelling of dynamic fracture, DYMAT 2009 – 9th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, 2, 1, 1529-1535.
- 6. Gao L., Chen X., Gao H., Zhang S., 2010, Description of nonlinear viscoelastic behavior and creep-rupture time of anisotropic conductive film, Materials Science and Engineering A, 527, 5115-5121.
- 7. Goyal S., Laha K., Das C.R., Panneerselvi S., Mathew M.D., 2013, Finite element analysis of effect of triaxial state of stress on creep cavitation and rupture behaviour of 2.25Cr-1Mo steel, International Journal of Mechanical Sciences, 75, 233-243.
- 8. Ha Y.D., Bobaru F., 2011, Characteristics of dynamic brittle fracture captured with peridynamics, Engineering Fracture Mechanics, 78, 6, 1156-1168.
- 9. Hu W., Wang Y., Yu J., Yen C.-F., Bobaru F., 2013, Impact damage on a thin glass plate with a thin polycarbonate backing, International Journal of Impact Engineering, 62, 152-165.
- 10. Hu Y.I., Yu Y., Wang H., 2014, Peridynamic analytical method for progressive damage in notched composite laminates, Composite Structures, 108, 1, 801-810.
- 11. Irgens F., 2008, Continuum Mechanics, Springer-Verlag Berlin, Heilderberg.
- 12. Kilic B., Agwai A., Madenci E., 2009, Peridynamic theory for progressive damage prediction in center-cracked composite laminates, Composite Structures, 90, 2, 141-151.
- 13. Kilic B., Madenci E., 2009, Structural stability and failure analysis using peridynamic theory, International Journal of Non-Linear Mechanics, 44, 8, 845-854.
- 14. Oterkus E., Madenci E., Weckner O., Silling S.A., Bogert P., Tessler A., 2012, Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot, Composite Structures, 94, 3, 839-850.
- 15. Rice J.R., 1971, Inelastic constitutive relation for solids: an internal-variable theory and its application to metal plasticity, Journal of the Mechanics and Physics of Solids, 19, 433-455.
- 16. Schapery R.A., 1999, Nonlinear viscoelastic and viscoplastic constitutive equations with growing damage, International Journal of Fracture, 97, 33-66.
- 17. Silling S.A., 2000, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48, 175-209.
- 18. Silling S.A., Askari E., 2005, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83, 1526-1535.
- 19. Voyiadjis G.Z., Zolochevsky A., 2000, Therodynamic modeling of creep damage in materials with different properties in tension and compression, International Journal of Solids Structure, 37, 24, 3281-3303.
- 20. Warren T.L., Silling S.A., Askari A., Weckner O., Epton M.A., Xu J., 2009, A non-ordinary state-based peridynamic method to model solid material deformation and fracture, International Journal of Solids and Structures, 46, 5, 1186-1195.
- 21. Weckner O., Abeyaratne R., 2005, The effect of long-range forces on the dynamics of a bar, Journal of the Mechanics and Physics of Solids, 53, 3, 705-728.
- 22. Xu Y., Yuan H., 2011, Applications of normal stress dominated cohesive zone models for mixed-mode crack simulation based on extended finite element methods, Engineering Fracture Mechanics, 78, 3, 544-558.
- 23. Yang Q., Chen X., Zhou W.Y., 2005, Microscopic thermodynamics basis of normality structure of inelastic constitutive relations, Mechanics Research Communications, 32, 590-596.
- 24. Zhang L., Liu Y., Yang Q., 2014, A creep model with damage based on internal variable theory and its fundamental properties, Mechanics of Materials, 78, 44-55.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fc46faf-4828-49b4-bd90-c1efee341152