PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Skuteczność syntetycznych zeolitów w usuwaniu metali ciężkich i substancji organicznych z roztworów wodnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Effectiveness of synthetic zeolites in removal of heavy metals and organic substances from aqueous solutions
Języki publikacji
PL
Abstrakty
EN
With constantly increasing ecological needs, it is necessary to look for suitable solutions aimed at purifying the water and soil environment. Synthetic zeolites, i.e. porous, ion-exchangeable, acid- and heat-resistant, sodium and calcium aluminosilicates, may be the answer to this demand. This paper presents the adsorption capabilities of two synthetic zeolites (Na-X, Na-P1) obtained via hydrothermal reaction of aqueous sodium hydroxide and high-carbon fly ash. For this purpose, the experiment was conducted with adsorbates from two groups: heavy metals (Pb(II), Zn(II)) and organic substances (polymer - poly(acrylic acid) (PAA), nonsteroidal anti-inflammatory drug – diclofenac (DCF)). Adsorption was carried out in single and mixed adsorbate systems (metal-metal; metal-organic substance; organic substance-organic substance). The adsorption capacity of the studied zeolites was determined relative to Pb(II), Zn(II) and DCF. Desorption processes were also carried out to illustrate the regeneration abilities of the examined porous materials. In addition, the structure of the electrical double layer was characterized using potentiometric titrations and electrophoretic mobility measurements. The highest adsorbed amounts of heavy metals in single systems are observed for Na-X, i.e. 322.1 mg/g Pb(II) and 332.5 mg/g of Zn(II). In the case of Na-P1 zeolite, these amounts were 332.9 mg/g and 103.6 mg/g for Pb(II) and Zn(II), respectively. In mixed adsorbate systems there is a decrease in heavy metal adsorption, after the addition of both another metal or organic substance. In the first case, the decrease is small - the adsorption of Pb(II) on Na-X drops to 309.36 mg/g. In contrast, in mixed systems in the presence of anionic organic substances, the decrease in the amount of adsorbed ions is much greater. In the presence of DCF, Pb(II) adsorption on Na-X decrease to 98.7 mg/g, whereas on Na-P1 to 99.7 mg/g. The main mechanisms of the adsorption process in such systems are: competition for the adsorbent's active sites and the formation of complexes between adsorbates of opposite ionic character. However, the addition of a heavy metal causes increase of the drug adsorption. In the case of Pb(II) ions, the amount of DCF adsorbed on Na-X increases from 6.68 mg/g to 12.86 mg/g, and a slight decrease is observed on Na-P1. On the other hand, in the presence of PAA, DCF adsorption on Na-X decreases to 5.86 mg/g. Moreover, the synthesized adsorbents can be successfully regenerated with hydrochloric acid (in the single and mixed systems containing heavy metals). The addition of Pb(II)/Zn(II) and PAA causes a decrease in the zeta potential of the examined zeolites, whereas the addition of DCF increases this parameter. In turn, the surface charge density decreases in the presence of each adsorbate. It was proved that both synthetic zeolites can be successfully used in soil and water purification processes in continuously improved procedures.
Rocznik
Strony
97--117
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Uniwersytet Marii Curie-Skłodowskiej w Lublinie, Wydział Chemii, Instytut Nauk Chemicznych, Katedra Radiochemii i Chemii Środowiskowej, Pl. Marii Curie-Skłodowskiej 3, 20-031 Lublin
Bibliografia
  • [1] X.B. Liu, X.Y. Zhang, Y.X. Wang, Y.Y. Sui, S.L. Zhang, S.J. Herbert, G. Ding, Plant Soil Environ. 2010, 56, 87.
  • [2] V.M. Correia, T. Stephenson, S.J. Judd, Environ Tech., 1994, 15, 917.
  • [3] A.T. Akarsubasi, O. Ince, B. Kirdar, N.A. Oz, D. Orhon, T.P. Curtis, I.M. Head, B.K. Ince, Water Res., 2005, 39, 1576.
  • [4] M. Huang, Y. Li, G. Gu, Desalinat., 2010, 262, 36.
  • [5] F. Fu, Q. Wang. J Environ Manag., 2011, 92, 407.
  • [6] F.J. Larney, D.A. Angers, Can. J. Soil Sci., 2012, 92, 19.
  • [7] H.T. Soudejani, H. Kazemian, V.J. Inglezakis, A.A. Zorpas, Biocatal. Agric. Biotechnol. 2019, 22, 101396.
  • [8] G. Gottardi, E. Galli, Natural Zeolites; Springer: Berlin/Heidelberg, Germany, 1985.
  • [9] V.J. Inglezakis, A.A. Zorpas, Handbook of Natural Zeolites; Bentham Science: Sharjah, United Arab Emirates, 2012.
  • [10] A.K. Bansiwal, S.S. Rayalu, N.K. Labhasetwar, A.A. Juwarkar, S. Devotta, J. Agric. Food Chem., 2006, 54, 4773.
  • [11] C.G. Flores, H. Schneider, N.R. Marcilio, L. Ferret, J.C.P. Oliveira, Waste Manage. 2017, 70, 263.
  • [12] W. Shi, H. Shao, H. Li, M. Shao, S. Du, J. Hazard. Mater., 2009, 170, 1.
  • [13] B.Hudcová, M. Osacký, M. Vítková, A. Mitzia, M. Komáreka, Micropor. Mesopor. Mat., 2021, 317, 111022.
  • [14] F. Moynier, S. Pichat, M.-L. Pons, D. Fike, V. Balter, F. Albarède, Chem. Geol., 2009, 267, 125.
  • [15] J. Liu, Y. Dong, H. Xu, D. Wang, J. Xu, J. Hazard. Mater., 2007, 147(3), 947.
  • [16] Y. Zhang, S.-U. Geißen, C. Gal, Chemosphere, 2008, 73, 1151.
  • [17] S. Jodeh, F. Abdelwahab, N. Jaradat, I. Warad, W. Jodeh, J. Assoc. Arab. Univ. Basic Appl. Sci. 2016, 20(1), 32.
  • [18] W. Janusz, (1999). Electrical double layer at the metal oxide–electrolyte interface in “interfacial forces and fields: theory and applications”, M. Dekker, New York, vol 85, Chapter 4.
  • [19] M. Medykowska, M. Wiśniewska, K. Szewczuk-Karpisz, R. Panek, J. Mol. Liq. 2022, 357(11):119144
  • [20] J. L. Sotelo, G. Ovejero, A. Rodríguez, S. Álvarez, J. Galán, J. García, Chem. Eng. J., 2014, 240, 443.
  • [21] S. Li, Y. Gan, S. J. Shah, R. Wang, W. Gong, R. Wei, H. Ji, Z. Zhao, Z. Zhao, Chem. Eng. J., 2021, 426, 131440.
  • [22] M. Wiśniewska, S. Chibowski, T. Urban, J. Hazard. Mater., 2015, 283, 815.
  • [23] A. M’Pandou, B. Siffert, Colloids and Surfaces A., 1987, 4, 159.
  • [24] M. Wiśniewska, P. Nowicki, K. Szewczuk-Karpisz, M. Gęca, K. Jędruchniewicz, P. Oleszczuk, Sep. Purif. Technol., 2021, 276, 119297.
  • [25] G. Fijałkowska, K. Szewczuk-Karpisz, M. Wiśniewska, J. Mol. Liq., 2019, 293, 111514.
  • [26] G. Fijałkowska, K. Szewczuk-Karpisz, M. Wiśniewska, J. Environ. Health Sci. Eng., 2020, 18(2), 599.
  • [27] E. Skwarek, W. Janusz, D. Sternik, J. Radioanal. Nucl. Chem. 2014, 299, 2027.
  • [28] G. Fijałkowska, K. Szewczuk-Karpisz, M. Wiśniewska, Int. J. Environ. Sci. Technol., 2020, 17, 1101.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fc2b223-d5e8-4c5e-b3f8-0981e6878a25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.