PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technology of Production of Mold Filling Material for Specific Purposes in the Field of Metallic Foam Casting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the technology for the production of precursors (space holder material) used to form the complex internal structure of cast metal foam. The precursor material must exhibit sufficient refractoriness, resist contact with liquid metal and at the same time should exhibit good collapsibility after casting. With regard to the greening of foundry production, the focus of this paper was on materials that could exhibit the above properties and at the same time do not have a negative impact on the environment. In this paper, the technology for the production of spherical precursors from a self-hardening mixture with a geopolymer-based binder system is described and verified. The motivation for the choice of material and all the sub-steps of the process - molding into the core box, tumbling, including the necessary accompanying tests of the mechanical properties of the core mixture being verified - are described.
Twórcy
  • VŠB-Technical University of Ostrava, Faculty of Materials Science and Technology, Department of Metallurgical Technologies, 17. Listopadu 2172/15, Ostrava-Poruba, Czech Republic
  • VŠB-Technical University of Ostrava, Faculty of Materials Science and Technology, Department of Metallurgical Technologies, 17. Listopadu 2172/15, Ostrava-Poruba, Czech Republic
autor
  • VŠB-Technical University of Ostrava, Faculty of Materials Science and Technology, Department of Metallurgical Technologies, 17. Listopadu 2172/15, Ostrava-Poruba, Czech Republic
  • VŠB-Technical University of Ostrava, Faculty of Materials Science and Technology, Department of Metallurgical Technologies, 17. Listopadu 2172/15, Ostrava-Poruba, Czech Republic
  • VŠB-Technical University of Ostrava, Faculty of Materials Science and Technology, Department of Metallurgical Technologies, 17. Listopadu 2172/15, Ostrava-Poruba, Czech Republic
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Foundry Engineering, 2 Towarowa Str., 744-100 Gliwice, Poland
Bibliografia
  • [1] B. Stojanovic, M. Bukvic, I. Epler. Application of aluminum and aluminum alloys in engineering, Applied Engineering Letters 3, 52-62 (2018). DOI: https://doi.org/10.18485/aeletters.2018.3.2.2
  • [2] M. Brůna, A. Remišová, A. Sládek, Effect of filter thickness on reoxidation and mechanical properties of aluminium alloy AlSi7Mg0.3, Arch. Metall. Mater. 64 (3), 1100-1106 (2019). DOI: https://doi.org/10.24425/amm.2019.129500
  • [3] J.P. Weiler. A review of magnesium die-castings for closure applications, J. Magnes. Alloy. 7, 297-304 (2019). DOI: https://doi.org/10.1016/j.jma.2019.02.005
  • [4] J. Banhart, Light-Metal Foams - History of Innovation and Technological Challenges, Adv. Eng. Mater. 15, 82-111 (2013). DOI: https://doi.org/10.1002/adem.201200217
  • [5] L.J. Gibson, M.F. Ashb, Cellular Solids - Structures and Properties, Cambridge University Press, Cambridge, United Kingdom (1997).
  • [6] J. Banhart, Manufacturing Routes for Metallic Foams, JOM. 52 (12), 22-27 (2000).
  • [7] M. Salehi, S.M.H. Mirbagheri, A. Jafari Ramiani, Efficient energy absorption of functionally-graded metallic foam-filled tubes under impact loading, Trans. Nonferrous Met. Soc. China, 31, 92-110 (2021). DOI: https://doi.org/10.1016/s1003-6326(20)65480-2
  • [8] J. García-Peláez, J.M. Rego-Junco, L. Sánchez-Ricart, Reduction of Underwater Noise Radiated by Ships: Design of Metallic Foams for Diesel Tanks, IEEE J. Ocean. Eng. 43, 444-456 (2017). DOI: https://doi.org/10.1109/JOE.2017.2700085
  • [9] S.S. Sharma, S. Yadav, A. Joshi, R. Khatri, Application of metallic foam in vehicle structure: A review, Materials Today: Proceedings 60 (7) (2022). DOI: https://doi.org/10.1016/j.matpr.2022.03.201
  • [10] H. Zhang, Z. Zou, L. Qi, H. Liu, Investigation of metallic foam in the application of turbine cooling, Procedia Engineering 27, 752-761 (2012). DOI: https://doi.org/10.1016/j.proeng.2011.12.516
  • [11] L.P. Lefebvre, J. Banhart, D. Dunand, Porous Metals and Metallic Foams: Current Status and Recent Developments, Adv. Eng. Mater. 10 (9), 775-787 (2008).
  • [12] S. Amjad, Phd Thesis, Thermal Conductivity and Noise Attenuation in Aluminium Foams. University of Cambridge Cambridge, England (2001).
  • [13] D.M. Elzey, H.N.G. Wadley, The limits of solid state foaming, Acta Mater. 46, 849-859 (2001).
  • [14] P.T. Sardari, D. Giddings, D. Grant, D. Gillot, G.S. Walker, Discharge of a composite metal foam/phase change material to air heat exchanger for domestic thermal storage unit, Renew. Energy 148, 987-1001 (2020). DOI: https://doi.org/10.1016/j.renene.2019.10.084
  • [15] C. Körner, F. Singer, Processing of Metal Foams - challenges and opportunities, Adv. Eng. Mater. 2, 159-165 (2000). DOI: https://doi.org/10.1002/(sIcI)1527-2648(200004)2
  • [16] S. Baek, J. Cho, K. Kim, S. Ahn, Ch.-L. Myung, S. Park, Effect of the Metal-Foam Gasoline Particulate Filter (GPF) on the Vehicle Performance in a Turbocharged Gasoline Direct Injection Vehicle over FTP-75, Int. J. Automot. Technol. 21, 1139-1147 (2020). DOI: https://doi.org/10.1007/s12239-020-0108-6
  • [17] M.G. Pinca, Ch. Ayapana, J. Tan, Metallic Foams [online]. URL: http://www.scribd.com/doc/79425905/metal-foam, accessed: 20.05.2022.
  • [18] S.-O. Agbedor, D. Yang, J. Chen, L. Wang, H. Wu, Low-Temperature Reactive Sintered Porous Mg-Al-Zn Alloy Foams, Metals 12 (4), 692 (2022). DOI: https://doi.org/10.3390/met12040692
  • [19] A. Cañadilla, A. Romero, G.P. Rodríguez, Sustainable Production of Powder Metallurgy Aluminum Foams Sintered by Concentrated Solar Energy, Metals 11 (10), 1544 (2021). DOI: https://doi.org/10.3390/met11101544
  • [20] V. Merta, J. Beňo, T. Obzina, F. Radkovský, I. Kroupová, P. Lichý, M. Folta, K. Janovská, I. Nguyenová, M. Dostál. Innovative Inorganic Binder Systems for the Production of Cores for Non-Ferrous Metal Alloys Reflecting the Product Quality Requirements, Metals 11 (5), 733 (2021). DOI: https://doi.org/10.3390/met11050733
  • [21] L. Dahil, A. Karabulut, S. Baspinar, Damping properties of open pore aluminum foams produced by vacuum casting and NaCl dissolution process, Metalurgija 52, 489-492 (2013).
  • [22] Y. Hangai, K. Zushida, H. Fujii, R. Ueji, O. Kuwaruzu, N. Yoshikawa, Friction powder compaction process for fabricating open-celled Cu foam by sintering-dissolution process route using NaCl space holder, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 585, 468-474 (2013). DOI: https://doi.org/10.1016/j.msea.2013.08.004
  • [23] N. Jha, D.P. Mondal, J.D. Majumdar, A. Badkul, A.K. Jha, A.K. Khare, Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route, Mater. Des. 47, 810-819 (2013). DOI: https://doi.org/10.1016/j.matdes.2013.01.005
  • [24] M. Vykoukal, A. Burian, M. Přerovská, GEOPOL®. The Innovated Environment Friendly Inorganic Binder System, Arch. Foundry Eng. 19 (1), 109-116 (2019). DOI: https://doi.org/10.24425/afe.2019.127103
  • [25] M. Holtzer, D. Drożyński, A. Bobrowski, W. Plaza, Influence of Binding Rates on Strength Properties of Moulding Sands with the GEOPOL Binder, Arch. Foundry Eng. 14 (1), 37-40 (2014). DOI: https://doi.org/10.2478/afe-2014-0009
  • [26] D. Drożyński, A. Bobrowski, M. Holtzer, Influence of the Reclaim Addition on Properties of Moulding Sands with the Geopol Binder, Arch. Foundry Eng. 15 (1), 138-142 (2015).
Uwagi
This research was funded by the project No. CZ.02.1.01/0.0/0.0/17_049/0008399 (Development of intersector cooperation of RMSTC with the application sphere in the field of advanced research and innovations of classical metal materials and technologies using modelling methods). The contribution was worked out with the support of the Technology Agency of the Czech Republic - TH02020668. Work was carried out in the support of projects of “Student Grant Competition” numbers SP2022/15, SP2022/68 and SP2022/83.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fc18278-7bdb-406b-8052-13e3239c4c6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.