PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimating and Mapping Potential Littering into Canal in Catchment Areas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Waste mismanagement occurs in the canal catchment area due to uneven waste transportation services, allowing waste to leak into the canal. This research aims to identify catchment areas of the canal with the potential for waste mismanagement, estimate the amount of waste that could enter the channels and compare the results with the density of floating waste above the channel. The research method involves spatial analysis using GIS, incorporating various variables such as land use, building data for population and waste generation calculations, road network data for channel access, and service area data for garbage truck transportation. Next, we conduct an overlay analysis to create a zone map of potential littering areas in the channel, accompanied by an estimate of the waste amount. Furthermore, we used aerial mapping with a UAV as comparative data to monitor the density of floating waste. The results indicate that approximately 296 hectares of land, a potential zone for waste disposal into canals, generate 161,750 litres daily, accounting for 33% of the total waste generation in the water catchment area. This research successfully detected the density of floating waste at the top of the canal, particularly in four areas of the potential zone: Sambung Jawa Ward, Bontorannu Ward, Balang Baru Ward, and Pa’baengbaeng Ward, proves that there is mismanagement of waste on land. This situation demonstrates the need to address waste mismanagement by examining regional zones with access to a waste bank as an alternative solution.
Twórcy
  • Graduate Programs in Environmental Systems, Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, 808-0135, Japan
  • Department of Urban and Regional Planning, Faculty of Engineering, Hasanuddin University, Makassar, 92119, Indonesia
  • Graduate Programs in Environmental Systems, Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, 808-0135, Japan
  • Department of Natural Science Education, School of Postgraduate Studies, Universitas Pakuan, Bogor, 16143, Indonesia
  • Graduate Programs in Environmental Systems, Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, 808-0135, Japan
  • Research Centre for Urban Energy Management, Institute of Environmental Science and Technology, The University of Kitakyushu, Kitakyushu, 808-0135, Japan
Bibliografia
  • 1. Abdel-Shafy, H.I., Mansour, M.S.M. 2018. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 27(4), 1275–1290. https://doi.org/10.1016/j.ejpe.2018.07.003
  • 2. Agamuthu, P., Babel, S. 2023. Waste management developments in the last five decades: Asian perspective. Waste Management & Research: The Journal for a Sustainable Circular Economy, 41(12), 1699– 1716. https://doi.org/10.1177/0734242X231199938
  • 3. Andreadis, K.M., Wing, O.E.J., Colven, E., Gleason, C.J., Bates, P.D., Brown, C.M. 2022. Urbanizing the floodplain: Global changes of imperviousness in floodprone areas. Environmental Research Letters, 17(10), 104024. https://doi.org/10.1088/1748-9326/ac9197
  • 4. Anggraini, N., Muis, R., Al Fariz, R.D., Yunus, S., Rachman, I., Matsumoto, T. 2023. Investigation of Solid Waste Management (SWM) in Coastal Settlement: Makassar City, Indonesia. Energy Environment and Storage, 3(3), 81–87. https://doi.org/10.52924/XFBP5264
  • 5. Anggraini, N., Muis, R., Ariani, F., Yunus, S. 2021. Model of Solid Waste Management (SWM) in Coastal Slum Settlement: Evidence for Makassar City. Nature Environment and Pollution Technology, 20(2). https://doi.org/10.46488/NEPT.2021.v20i02.002
  • 6. Anggraini, N., Tawakkal, I., Rachman, I., Matsumoto, T. 2024. Object detection of macroplastic waste using unmanned aerial vehicles in urban canal. Ecological Engineering.
  • 7. Bangani, L., Kabiti, H.M., Amoo, O., Nakin, M.D.V., Magayiyana, Z. 2023. Impacts of illegal solid waste dumping on the water quality of the Mthatha River. Water Practice & Technology, 18(5), 1011–1021. https://doi.org/10.2166/wpt.2023.053
  • 8. Chenillat, F., Huck, T., Maes, C., Grima, N., Blanke, B. 2021. Fate of floating plastic debris released along the coasts in a global ocean model. Marine Pollution Bulletin, 165, 112116. https://doi.org/10.1016/j.marpolbul.2021.112116
  • 9. Damanhuri, E., Handoko, W., Padmi, T. 2014. Municipal solid waste management in Indonesia. In A. Pariatamby & M. Tanaka (Eds.), Municipal Solid Waste Management in Asia and the Pacific Islands, 139–155. Springer Singapore. https://doi.org/10.1007/978-981-4451-73-4_8
  • 10. Eka, O., Regina, C., Rasha, A., Agnes, S., Nur, S., Nuraisyah, A. 2023. Waste Bank in Indonesia: Problem and opportunities. In S. Jahroh, K. Kamilah, A. Abdullah, R. D. Indrawan, & Sulistyo (Eds.), Proceedings of the Business Innovation and Engineering Conference (BIEC 2022), 236, 284–290. Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-144-9_27
  • 11. Fatmawati, F., Mustari, N., Haerana, H., Niswaty, R., Abdillah, A. 2022. Waste Bank Policy Implementation through Collaborative Approach: Comparative Study—Makassar and Bantaeng, Indonesia. Sustainability, 14(13), 7974. https://doi.org/10.3390/su14137974
  • 12. Ferronato, N., Torretta, V. 2019. Waste mismanagement in developing countries: A review of global issues. International Journal of Environmental Research and Public Health, 16(6), 1060. https://doi.org/10.3390/ijerph16061060
  • 13. Franz, B., Freitas, M.A.V. 2011. Generation and impacts of floating litter on urban canals and rivers: Rio de Janeiro megacity case study. 321–332. https://doi.org/10.2495/ST110291
  • 14. Gholami, M., Torkashvand, J., Rezaei Kalantari, R., Godini, K., Jafari, A.J., Farzadkia, M. 2020. Study of littered wastes in different urban landuses: An 6 environmental status assessment. Journal of Environmental Health Science and Engineering, 18(2), 915–924. https://doi.org/10.1007/s40201-020-00515-7
  • 15. Haerani, D., Syafrudin, Budi, S.S. 2019. Review modeling of solid waste transportation routes using Geographical Information System (GIS). E3S Web of Conferences, 125, 07006. https://doi.org/10.1051/e3sconf/201912507006
  • 16. Hartono, D.M., Kristanto, G.A., Amin, S. 2015. Potential reduction of solid waste generated from traditional and modern markets. International Journal of Technology, 6(5), 838. https://doi.org/10.14716/ijtech.v6i5.2016
  • 17. Iyengar, J.V. 1998. Application of geographical information systems.
  • 18. Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L. 2015. Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771. https://doi.org/10.1126/science.1260352
  • 19. Kataoka, T., Nihei, Y. 2020. Quantification of floating riverine macro-debris transport using an image processing approach. Scientific Reports, 10(1), 2198. https://doi.org/10.1038/s41598-020-59201-1
  • 20. Khan, Md. M.-U.-H., Vaezi, M., Kumar, A. 2018. Optimal siting of solid waste-to-value-added facilities through a GIS-based assessment. Science of The Total Environment, 610–611, 1065–1075. https://doi.org/10.1016/j.scitotenv.2017.08.169
  • 21. Kurniawan, S.B., Imron, M.F. 2019. The effect of tidal fluctuation on the accumulation of plastic debris in the Wonorejo River Estuary, Surabaya, Indonesia. Environmental Technology & Innovation, 15, 100420. https://doi.org/10.1016/j.eti.2019.100420
  • 22. Lamond, J., Bhattacharya, N., Bloch, R. 2012. The role of solid waste management as a response to urban flood risk in developing countries, a case study analysis. 193–204. https://doi.org/10.2495/FRIAR120161
  • 23. Latanna, M.D., Gunawan, B., Franco-García, M.L., Bressers, H. 2023. Governance assessment of community-based waste reduction program in Makassar. Sustainability, 15(19), 14371. https://doi.org/10.3390/su151914371
  • 24. Major River Basin Organization Pompengan – Jeneberang, I. 2018. Flood Channel Systems. Ministry of Public Works, Indonesia.
  • 25. Makassar Bureau of Statistics. 2023. Makassar in Figures 2023. Makassar Bureau of Statistics. https://makassarkota.bps.go.id/indicator/12/72/1/jumlahpenduduk-menurut-kecamatandan-jenis-kelamindi-kota-makassar.html
  • 26. Maspaitella, B.J., Susanty, A., Purwaningsih, R. 2021. Waste transportation route garbage using network analysis method, a research method design. IOP Conference Series: Materials Science and Engineering, 1072(1), 012025. https://doi.org/10.1088/1757-899X/1072/1/012025
  • 27. Ministry of Environment and Forestry, I. 2023. Waste Generation. Ministry of Environment and Forestry, Indonesia. https://sipsn.menlhk.go.id/sipsn/public/data/timbulan
  • 28. Muis, R., Al Fariz, R.D., Yunus, S., Tasrief, R., Rachman, I., Matsumoto, T. 2024. Investigating the potential of landfilled plastic waste—a case study of makassar landfill, Eastern Indonesia. Ecological Engineering & Environmental Technology, 25(3), 185– 196. https://doi.org/10.12912/27197050/178529
  • 29. Nunkhaw, M., Miyamoto, H. 2024. An image analysis of river-floating waste materials by using deep learning techniques. Water, 16(10), 1373. https://doi.org/10.3390/w16101373
  • 30. Putra, A.H., Amalia, A., Putro, R.K.H., Darmayani, L.F. 2020. Waste transportation route optimization in malang using network analysis. IOP Conference Series: Earth and Environmental Science, 506(1), 012033. https://doi.org/10.1088/1755-1315/506/1/012033
  • 31. Rahim, S., Widayati, W., Analuddin, K., Saleh, F., Alfirman, Sahar, S. 2020. Spatial distribution of marine debris pollution in mangrove-estuaries ecosystem of Kendari Bay. IOP Conference Series: Earth and Environmental Science, 412(1), 012006. https://doi.org/10.1088/1755-1315/412/1/012006
  • 32. Ramadan, B.S., Ardiansyah, S.Y., Sendari, S., Wibowo, Y.G., Rachman, I., Matsumoto, T. 2024. Optimization of municipal solid waste collection sites by an integrated spatial analysis approach in Semarang City. Journal of Material Cycles and Waste Management, 26(2), 1231–1242. https://doi.org/10.1007/s10163-023-01876-5
  • 33. Regulation of Mayor. 2018. Makassar City Mayor Regulation concerning Policies and Strategies in the Management of Household Waste (36–2018). Makassar City Government, Indonesia. https://peraturan.bpk.go.id/Details/111279/perwali-kota-makassar-no-36-tahun-2018
  • 34. Sadri, S.S., Thompson, R.C. 2014. On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England. Marine Pollution Bulletin, 81(1), 55–60. https://doi.org/10.1016/j.marpolbul.2014.02.020
  • 35. Sindangan, M.F., Ali, M., Sobarsyah, M. 2024. Waste water Management in Pannampu Canal Based on Water Sensitive Urban Design (Wsud) as Supporting Factor for Urban Quality Improvement. 45(1).
  • 36. United Nations Human Settlements Programme (Ed.). 2005. A guidebook for local catchment management in cities. United Nations Human Settlements Programme (UN-Habitat).
  • 37. Van Emmerik, T., Mellink, Y., Hauk, R., Waldschläger, K., Schreyers, L. 2022. Rivers as plastic reservoirs. Frontiers in Water, 3, 786936. https://doi.org/10.3389/frwa.2021.786936
  • 38. Willis, K., Hardesty, B.D., Vince, J., Wilcox, C. 2022. Local waste management successfully reduces coastal plastic pollution. One Earth, 5(6), 666– 676. https://doi.org/10.1016/j.oneear.2022.05.008
  • 39. Wilson, D.C., Velis, C.A. 2015. Waste management – still a global challenge in the 21st century: An evidence-based call for action. Waste Management & Research: The Journal for a Sustainable Circular Economy, 33(12), 1049–1051. https://doi.org/10.1177/0734242X15616055
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fc11ff5-d63e-4007-b9dd-623cceabb7d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.