PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gas turbine intake air cooling systems of combined type and their optimum designing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Turbine intake air cooling (TIAC) by absorption lithium-bromide chillers (ACh) utilizing the exhaust heat is considered as the most effective fuel saving technology for temperate climatic conditions. But the cooling potential of TIAC systems based on ACh of a simple cycle is limited by a comparatively increased chilled water temperature of about 7°C excluding cooling intake air lower than 15°C. The application of a refrigerant as a coolant enables deeper cooling intake air to 10°C and lower. The application of two-stage hybrid absorption-ejector chillers (AECh) with a refrigerant ejector chiller (ECh) as a low temperature stage makes it possible to increase the annual fuel saving approximately twice in temperate climate due to deeper cooling air as compared with ACh. Furthermore, this effect can be achieved with the sizes of TIAC system reduced by about 20 % due to determining the rational refrigeration capacity of AECh providing practically maximum annual fuel saving increment and the use of the current excessive refrigeration capacities to cover peaked loads.
Rocznik
Strony
51--64
Opis fizyczny
Bibliogr. 64 poz., rys., wykr., wzory
Twórcy
  • Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
  • Gdańsk University of Technology 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
  • Gdańsk University of Technology 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
  • Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolayiv, Ukraine
Bibliografia
  • 1. Farouk, N., Sheng L., Hayat Q.: Effect of Ambient Temperature on the Performance of Gas Turbines Power Plant. International Journal of Computer Science Issues Vol. 10, Issue 1, No 3, 2013, 439-442.
  • 2. Ameri M, Hejazi S.H.: The study of capacity enhancement of the Chabahar gas turbine installation using an absorption chiller. Applied Thermal Engineering, Vol. 24, 2004, pp. 59-68.
  • 3. Forduy, S., Radchenko, A., Kuczynski, W., Zubarev, A., Konovalov, D.: Enhancing the fuel efficiency of gas engines in integrated energy system by chilling cyclic air. In: Tonkonogyi V. et al. (eds.) Grabchenko’s ICAMP. InterPartner-2019. LNME. Springer, Cham, 2020, 500-509. https://doi.org/10.1007/978-3-030-40724-7_51
  • 4. Popli, S., Rodgers, P., Eveloy, V.: Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry. Applied Thermal Engineering, Vol. 50, 2013, 918-931.
  • 5. Trushliakov, E., Radchenko, A., Forduy, S., Zubarev, A., Hrych, A.: Increasing the Operation Efficiency of Air Conditioning System for Integrated Power Plant on the Base of Its Monitoring. In: Nechyporuk M. et al. (eds.). (ICTM 2019). AISC, Springer, Cham, Vol. 1113, 2020, 351-360. https://doi.org/10.1007/978-3-030-37618-5_30
  • 6. Elberry, M.; Elsayed, A.; Teamah, M.; Abdel-Rahman, A.; Elsafty, A.: Performance improvement of power plants using absorption cooling system. Alex. Eng. J., Vol. 57, 2018, 2679-2686, doi:10.1016/j.aej.2017.10.004.
  • 7. Ehyaei, M.A., Hakimzadeh, S., Enadi, N., Ahmadi, P.: Exergy, economic and environment (3E) analysis of absorption chiller inlet air cooler used in gas turbine power plants. Int. J. Energy Res., Vol. 36, 2011, 486-498, doi:10.1002/er.1814.
  • 8. Andi, B., Venkatesan, J., Suresh, S., Mariappan, V.: Experimental Analysis of Triple Fluid Vapour Absorption Refrigeration System Driven by Electrical Energy and Engine Waste Heat. Therm. Sci., Vol. 23, 2019, 2995-3001.
  • 9. Radchenko, A, Scurtu, I-C., Radchenko, M., Forduy, S., Zubarev, A: Monitoring the efficiency of cooling air at the inlet of gas engine in integrated energy system. Thermal Science, OnLine-First Issue 00, 2020, 344-344 https://doi.org/10.2298/TSCI200711344R
  • 10. Radchenko, A., Mikielewicz, D., Forduy, S., Radchenko, M., Zubarev, A.: Monitoring the fuel efficiency of gas engine in integrated energy system. In: Nechyporuk M. et al. (eds) ICTM 2019, AISC, Springer, Cham, Vol. 1113, 2020, 361-370.
  • 11. Radchenko, A., Stachel, A., Forduy, S., Portnoi, B., Rizun, O.: Analysis of the efficiency of engine inlet air chilling unit with cooling towers. In: Ivanov V., et al. (eds.) Advances in Design, Simulation and Manufacturing III (DSMIE 2020). Lecture Notes in Mechanical Engineering, Springer, Cham, 2020, 322-331.
  • 12. Radchenko, A., Trushliakov, E., Tkachenko, V., Portnoi, B., Prjadko, O.: Improvement of the refrigeration capacity utilizing for the ambient air conditioning system. In: Tonkonogyi, V. et al. (eds.) Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering, Springer, Cham, 2021, 714-723.
  • 13. Radchenko, R., Kornienko, V., Pyrysunko, M., Bogdanov, M., Andreev, A.: Enhancing the efficiency of marine diesel engine by deep waste heat recovery on the base of its simulation along the route line. In: Nechyporuk M. et al. (eds) ICTME. AISC, Springer, Cham, Vol.1113, 2020, 337-350.
  • 14. Radchenko., R., Pyrysunko, M., Radchenko, A., Andreev, A., Kornienko, V.: Ship engine intake air cooling by ejector chiller using recirculation gas heat. In: Tonkonogyi V. et al. (eds.) AMP. InterPartner-2020. LNME, Springer, Cham, 2021, 734-743.
  • 15. Konovalov, D., Trushliakov, E., Radchenko, M., Kobalava, G., Maksymov, V.: Research of the aerothermopresor cooling system of charge air of a marine internal combustion engine under variable climatic conditions of operation. In: Tonkonogyi V. et al. (eds.) ICAMP, InterPartner-2019. LNME, Springer, Cham, 2020, 520-529.
  • 16. Konovalov, D., Kobalava, H., Maksymov, V., Radchenko, R., Avdeev, M.: Experimental Research of the Excessive Water Injection Effect on Resistances in the Flow Part of a Low-Flow Aerothermopressor. In: Ivanov V., et al. (eds.) Advances in Design, Simulation and Manufacturing III (DSMIE 2020). Lecture Notes in Mechanical Engineering, Springer, Cham, 2020, 292-301.
  • 17. Konovalov, D., Kobalava, H., Radchenko, M., Scurtu, I.C., Radchenko, R.: Determination of hydraulic resistance of the aerothermopressor for gas turbine cyclic air cooling. In: TE-RE-RD 2020, 14 p. E3S Web of Conferences 180, 2020, no 01012.
  • 18. Radchenko, R., Pyrysunko, M., Kornienko, V., Ionut-Cristian Scurtu, Patyk, R.: Improving the ecological and energy efficiency of internal combustion engines by ejector chiller using recirculation gas heat. In: Nechyporuk M., Pavlikov V., Kritskiy D. (eds) Integrated Computer Technologies in Mechanical Engineering - 2020. ICTM 2020. Lecture Notes in Networks and Systems, Springer, Cham, Vol. 188, 2021, 531-544.
  • 19. Radchenko, A., Trushliakov, E., Kosowski, K., Mikielewicz, D., Radchenko, M.: Innovative turbine intake air cooling systems and their rational designing. Energies, Vol. 13, Issue 23, 2020, no 6201. doi:10.3390/en13236201
  • 20. Radchenko, R., Radchenko, N., Tsoy, A., Forduy, S., Zybarev, A., Kalinichenko, I.: Utilizing the heat of gas module by an absorption lithium-bromide chiller with an ejector booster stage. AIP Conference Proceedings, Vol. 2285, 2020, no 030084. https://doi.org/10.1063/5.0026788
  • 21. Kornienko V., Radchenko R., Konovalov D., Andreev A., Pyrysunko M.: Characteristics of the rotary cup atomizer used as afterburning installation in exhaust gas boiler flue. In: Ivanov V. et al. (eds.) Advances in Design, Simulation and Manufacturing III (DSMIE 2020). Lecture Notes in Mechanical Engineering, Springer, Cham, 2020, 302-311.
  • 22. Kornienko V., Radchenko R., Mikielewicz D., Pyrysunko M., Andreev A.: Improvement of characteristics of water-fuel rotary cup atomizer in a boiler. In: Tonkonogyi V. et al. (eds.) Advanced Manufacturing Processes. InterPartner-2020. Lecture Notes in Mechanical Engineering, Springer, Cham, 2021, 664-674.
  • 23. Radchenko, A., Andreev, A., Konovalov, D., Zhang Qiang, Z., Zewei, L.: Analysis of ship main engine intake air cooling by ejector and turbocompressor chillers on equatorial voyages. In: Nechyporuk M., Pavlikov V., Kritskiy D. (eds) Integrated Computer Technologies in Mechanical Engineering - 2020. ICTM 2020. Lecture Notes in Networks and Systems, Springer, Cham, Vol. 188, 2021, 487-497.
  • 24. Radchenko, M., Mikielewicz, D., Andreev, A., Vanyeyev, S., Savenkov, O.: Efficient ship engine cyclic air cooling by turboexpander chiller for tropical climatic conditions. In: Nechyporuk M., Pavlikov V., Kritskiy D. (eds) Integrated Computer Technologies in Mechanical Engineering - 2020. ICTM 2020. Lecture Notes in Networks and Systems, Springer, Cham, Vol. 188, 2021, 498-507.
  • 25. Kornienko V., Radchenko M., Radchenko R., Konovalov D., Andreev, A., Pyrysunko M.: Improving the efficiency of heat recovery circuits of cogeneration plants with combustion of water-fuel emulsions. Thermal Science, Vol. 25, Issue 1, Part В, 2021, 791-800. https://doi.org/10.2298/TSCI200116154K
  • 26. Kornienko V., Radchenko R., Stachel A., Andreev A., Pyrysunko M.: Correlations for pollution on condensing surfaces of exhaust gas boilers with water-fuel emulsion combustion. In: Tonkonogyi V. et al. (eds.) AMP. InterPartner-2019. LNME, Springer, Cham, 2020, 530-539.
  • 27. Kornienko V., Radchenko R., Bohdal Ł., Kukiełka L., Legutko S.: Investigation of condensing heating surfaces with reduced corrosion of boilers with water-fuel emulsion combustion. In: Nechyporuk M. et al. (eds.) ICTM 2020. LNNS, Springer, Cham, Vol. 188, 2021, 300-309.
  • 28. Kornienko, V., Radchenko, M., Radchenko, R., Bohdal, Ł., Andreev, A.: Thermal characteristics of the wet pollution layer on condensing heating surfaces of exhaust gas boilers, In: Ivanov V., et al. (eds.) Advances in Design, Simulation and Manufacturing IV (DSMIE 2021). Lecture Notes in Mechanical Engineering. Springer, Cham, 2021.
  • 29. Radchenko, R., Pyrysunko, M., Kornienko, V., Konovalov, D., Girzheva, O.: Enhancing energy efficiency of ship diesel engine with gas ecological recirculation. In: Ivanov V., et al. (eds.) Advances in Design, Simulation and Manufacturing IV (DSMIE 2021). Lecture Notes in Mechanical Engineering. Springer, Cham, 2021.
  • 30. Trushliakov, E., Radchenko, M., Portnoi, B., Tkachenko, V., Hrych, A.: Analysis of operation of ambient air conditioning systems with refrigeration machines of different types. In: Nechyporuk M., Pavlikov V., Kritskiy D. (eds) Integrated Computer Technologies in Mechanical Engineering - 2020. ICTM 2020. Lecture Notes in Networks and Systems, Springer, Cham, Vol. 188, 2021, 545-555.
  • 31. Dąbrowski, P., Klugmann, M., Mikielewicz, D.: Selected studies of flow maldistribution in a minichannel plate heat exchanger. Archives of Thermodynamics, Vol. 38, 2017, 135-148.
  • 32. Kumar, R., Singh, G., Mikielewicz, D.: A new approach for the mitigating of Flow Maldistribution in Parallel Microchannel Heat Sink. Journal of Heat Transfer, Vol. 140, 2018, 72401-72410.
  • 33. Kumar, R., Singh, G., and Mikielewicz, D.: Numerical study on mitigation of flow maldistribution in parallel microchannel heat sink: channels variable width versus variable height approach. Journal of Electronic Packaging, Vol. 141, 2019, 21009-21011.
  • 34. Dąbrowski, P., Klugmann, M., Mikielewicz, D.: Channel blockage and flow maldistribution during unsteady flow in a model microchannel plate heat exchanger. Journal of Applied Fluid Mechanics, Vol. 12, 2019, 1023-1035.
  • 35. Kobalava, H., Konovalov, D., Radchenko, R., Forduy, S., Maksymov, V.: Numerical simulation of an aerothermopressor with incomplete evaporation for intercooling of the gas turbine engine. In: Nechyporuk M., Pavlikov V., Kritskiy D. (eds) Integrated Computer Technologies in Mechanical Engineering - 2020. ICTM 2020. Lecture Notes in Networks and Systems, Springer, Cham, Vol. 188, 2021, 519-530.
  • 36. Trushliakov, E., Radchenko, M., Bohdal, T., Radchenko, R., Kantor, S.: An innovative air conditioning system for changeable heat loads. ICAMP, InterPartner-2019. LNME, Springer, Cham, 2020, 616-625.
  • 37. Kuczyński, W., Charun, H.: Experimental investigations into the impact of the void fraction on the condensation characteristics of R134a refrigerant in minichannels under conditions of periodic instability. Arch. Thermodyn., Vol. 32, 2011, 21-37, doi:10.2478/v10173
  • 38. Bohdal, T., Sikora, M., Widomska, K., Radchenko, A.M.: Investigation of flow structures during HFE-7100 refrigerant condensation. Arch. Thermodyn., Vol. 36, 2015, 25-34, doi:10.1515/aoter-2015-0030.
  • 39. Kuczyski, W., Charun, H., Bohdal, T., Kuczynski, W.: Influence of hydrodynamic instability on the heat transfer coefficient during condensation of R134a and R404A refrigerants in pipe minichannels. Int. J. Heat Mass Transf., Vol. 55, 2012, 1083-1094, doi:10.1016/j.ijheatmasstransfer.2011.10.002.
  • 40. Bohdal, T., Kuczynski, W.: Boiling of R404A refrigeration medium under the conditions of periodically generated disturbances. Heat Transf. Eng., Vol. 32, 2011, 359-368, doi:10.1080/01457632.2010.483851.
  • 41. Radchenko, N., Radchenko, A., Tsoy, A., Mikielewicz, D., Kantor, S., Tkachenko, V.: Improving the efficiency of railway conditioners in actual climatic conditions of operation. AIP Conference Proceedings, Vol. 2285, 2020, no 030072. https://doi.org/10.1063/5.0026789
  • 42. Radchenko, N.I.: On reducing the size of liquid separators for injector circulation plate freezers. International Journal of Refrigeration, Vol. 8, no. 5, 1985, 267-269.
  • 43. Radchenko, M., Radchenko, R., Tkachenko, V., Kantor, S., Smolyanoy, E.: Increasing the Operation Efficiency of Railway Air Conditioning System on the Base of Its Simulation Along the Route Line. In: Nechyporuk M. et al. (eds) ICTME (ICTM 2019). AISC (2020), Springer, Cham, Vol. 1113, 2020, 461-467. https://doi.org/10.1007/978-3-030-37618-5_39
  • 44. Radchenko, A., Radchenko, N., Tsoy, A., Portnoi, B., Kantor, S.: Increasing the efficiency of gas turbine inlet air cooling in actual climatic conditions of Kazakhstan and Ukraine. AIP Conference Proceedings, Vol. 2285, 2020, no 030071. https://doi.org/10.1063/5.0026787
  • 45. Radchenko, M., Portnoi, B., Kantor, S., Forduy, S., Konovalov, D.: Rational thermal loading the engine inlet air chilling complex with cooling towers. In: Tonkonogyi, V. et al. (eds.) Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering, Springer, Cham, 2021, 724-733.
  • 46. Radchenko, N., Trushliakov, E., Radchenko, A., Tsoy, A., Shchesiuk, O.: Methods to determine a design cooling capacity of ambient air conditioning systems in climatic conditions of Ukraine and Kazakhstan. AIP Conference Proceedings, Vol. 2285, 2020, no 030074. https://doi.org/10.1063/5.0026790
  • 47. Mikielewicz, D., Mikielewicz, J.: A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP. Applied Thermal Engineering, Vol. 30, 2010, 2357-2362.
  • 48. Ortiga, J., Bruno, J.C., Coronas, A.: Operational optimization of a complex trigeneration system connected to a district heating and cooling network. Applied Thermal Engineering, Vol. 50, 2013, 1536-1542.
  • 49. Khaliq, A., Dincer, I., Sharma, P.B.: Development and analysis of industrial waste heat based trigeneration for combined production of power heat and cold. Journal of Energy Institute, Vol. 83, Issue 2, 2010, 79-85.
  • 50. Rodriguez-Aumente, P.A., Rodriguez-Hidalgo, M.C., Nogueira, J.I., Lecuona, A., Venegas, M.C.: District heating and cooling for business buildings in Madrid. Applied Thermal Engineering, Vol. 50, 2013, 1496-1503.
  • 51. Radchenko, A., Radchenko, M., Trushliakov, E., Kantor, S., Tkachenko, V.: Statistical method to define rational heat loads on railway air conditioning system for changeable climatic conditions. 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, 2019, 1294-1298. https://doi.org/10.1109/ICSAI.2018.8599355
  • 52. Radchenko, M., Trushliakov, E., Tkachenko, V., Rizun, O., Tsaran, F.: Rational refrigeration loading of ambient air conditioning system. In: Ivanov V., et al. (eds.) Advances in Design, Simulation and Manufacturing IV (DSMIE 2021). Lecture Notes in Mechanical Engineering. Springer, Cham, 2021.
  • 53. Cardona, E., Piacentino, A.: A methodology for sizing a trigeneration plant in mediterranean areas. Applied Thermal Engineering, Vol. 23, 2003, 15 р.
  • 54. Trushliakov, E., Radchenko, M., Radchenko, A., Kantor, S., Zongming, Y.: Statistical approach to improve the efficiency of air conditioning system performance in changeable climatic conditions. 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, 2019, 256-260. https://doi.org/10.1109/ICSAI.2018.8599434
  • 55. Chaker, M., Meher-Homji, C.B., Mee, T., Nicholson, A.: Inlet fogging of gas turbine engines detailed climatic analysis of gas turbine evaporation cooling potential in the USA. J. Eng. Gas Turbines Power, Vol. 125, 2002, 300-309, doi:10.1115/1.1519266.
  • 56. Chaker, M., Meher-Homji, C.B.: Inlet fogging of gas turbine engines: climatic analysis of gas turbine evaporative cooling potential of international locations. J. Eng. Gas Turbines Power, Vol. 128, 2006, 815-825, doi:10.1115/1.1707034.
  • 57. Oktay, Z., Coskun, C., Dincer, I.: A new approach for predicting cooling degree-hours and energy requirements in buildings. Energy, Vol. 36, Issue 8, 2011, 4855-4863.
  • 58. Canova, A, Cavallero, C, Freschi, F, Giaccone, L, Repetto, M, Tartaglia, M.: Optimal energy management. IEEE Industry Applications Magazine, Vol. 15, 2009, 62-65.
  • 59. Rodriguez-Aumente, P.A., Rodriguez-Hidalgo, M.D.C., Nogueira, J.I., Lecuona, A., Venegas, M.D.C.: District heating and cooling for business buildings in Madrid. Appl. Therm. Eng., Vol. 50, 2013, 1496-1503, doi:10.1016/j.applthermaleng.2011.11.036.
  • 60. Kavvadias, K.; Maroulis, Z.: Multi-objective optimization of a trigeneration plant. Energy Policy, Vol. 38, 2010, 945-954, doi:10.1016/j.enpol.2009.10.046.
  • 61. Lozano, M.A., Ramos, J.C., Serra, L.M.: Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints. Energy, Vol. 35, 2010, 794-805, doi:10.1016/j.energy.2009.08.022.
  • 62. Forsyth, J.L.: Gas turbine inlet air chilling for LNG, 2013: IGT International Liquefied Natural Gas Conference Proceedings, 3, 1763-1778. https://www.scopus.com/record/display.uri?eid=2-s2.0-84904725071&origin=nward&txGid=b9d07662f250f4a4511cbfc9c242297a
  • 63. Kalhori, S.B.; Rabiei, H.; Mansoori, Z. Mashad trigeneration potential-An opportunity for CO2 abatement in Iran. Energy Conv. Manag. 2012, 60, 106-114.
  • 64. Gas turbine electrical stations. Nikolaev: "Zorya-Mashproject", 2007, 16 p. http://www.zmturbines.com
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fbba195-d603-4c61-850f-d67e05bf3ffc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.