Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Precise simulations of severe weather events are a challenge in the era of changing climate. By performing simulations correctly and accurately, these phenomena can be studied and better understood. In this paper, we have verified how different initial and boundary conditions affect the quality of simulations performed using the Weather Research and Forecasting Model (WRF). For our analysis, we chose a derecho event that occurred in Poland on 11 August 2017, the most intense and devastating event in recent years. High-resolution simulations were conducted with initialization at 00 and 12 UTC (11 August 2017) using initial and boundary conditions derived from the four global models: Global Forecast System (GFS) from the National Centers for Environmental Prediction (NCEP), Integrated Forecast System (IFS) developed by the European Center for Medium-Range Weather Forecasts (ECMWF), Global Data Assimilation System (GDAS) and ERA5. For the last, we made separate calculations using data at the pressure and model levels. The results were evaluated against surface and radar data. We found that the simulations that used data from the GDAS and GFS models at 12 UTC were the more accurate, while ERA5 gave the worst predictions. However, all models were characterized by a low probability of detection and a high number of false alarms for simulations of extreme precipitation and wind gusts.
Słowa kluczowe
Rocznik
Tom
Strony
60--87
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
autor
- Institute of Meteorology and Water Management - National Research Institute, Poland
autor
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Poland
- Institute of Meteorology and Water Management - National Research Institute, Poland
autor
- Institute of Meteorology and Water Management - National Research Institute, Poland
autor
- Institute of Meteorology and Water Management - National Research Institute, Poland
autor
- Institute of Meteorology and Water Management - National Research Institute, Poland
Bibliografia
- Bauer P., Thorpe A., Brunet G., 2015, The quiet revolution of numerical weather prediction, Nature, 525, 47-55, DOI: 10.1038/nature14956.
- Bei N., Zhang F., 2007, Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-Yu front of China, Quarterly Journal of Royal Meteorological Society, 133 (622), 83-99, DOI: 10.1002/qj.20.
- Claridge D.E., Chen H., 2006, Missing data estimation for 1-6 h gaps in energy use and weather data using different statistical methods, International Journal of Energy Research, 30 (13), 1075-1091, DOI: 10.1002/er.1207.
- Cornwall W., 2016, Efforts to link climate change to severe weather gain ground, Science, 351 (6279), 1249-1250, DOI: 10.1126/science.351.6279.1249.
- Daly S.F., Davis R., Ochs E., Pangburn T., 2000, An approach to spatially distributed snow modelling of the Sacramento and San Joaquin basins, California, Hydrological Processes, 14 (18), 3257-3271, DOI: 10.1002/1099-1085(20001230)14:183.0.co;2-z.
- De Meij A., Vinuesa J.F., 2014, Impact of SRTM and Corine Land Cover data on meteorological parameters using WRF, Atmosphere Research, 143, 351-370, DOI: 10.1016/j.atmosres.2014.03.004.
- EEA, 2020, Economic losses from climate-related extremes in Europe, CSI 042 , CLIM 039, available online at https://www.eea.europa.eu/ds_resolveuid/cf171dde4a5846f99ac722b92807e9f1 (data access 11.11.2021).
- Figurski M., Nykiel G., 2020a, Simulation of the derecho event in Poland of 11th August 2017 using the WRF model and ECMWF data as initial conditions [Data set], Gdańsk University of Technology, DOI: https://doi.org/10.34808/kxnc-rc32.
- Figurski M., Nykiel G., 2020b, Simulation of the derecho event in Poland of 11th August 2017 using the WRF model and ERA5 data on pressure levels as initial conditions [Data set], Gdańsk University of Technology, DOI: https://doi.org/10.34808/ava3-yd08.
- Figurski M., Nykiel G., 2020c, Simulation of the derecho event in Poland of 11th August 2017 using the WRF model and ERA5 data on model levels as initial conditions [Data set], Gdańsk University of Technology, DOI: https://doi.org/10.34808/fkmjdh09.
- Figurski M., Nykiel G., 2020d, Simulation of the derecho event in Poland of 11th August 2017 using the WRF model and GFS data as initial conditions [Data set], Gdańsk University of Technology, DOI: https://doi.org/10.34808/3s00-kn10.
- Figurski M., Nykiel G., 2020e, Simulation of the derecho event in Poland of 11th August 2017 using the WRF model and GDAS data as initial conditions [Data set], Gdańsk University of Technology, DOI: https://doi.org/10.34808/ceh3-7z70.
- Gevorgyan A., 2018, Convection-permitting simulation of a heavy rainfall event in Armenia using the WRF model, Journal of Geophysical Research. Atmospheres, 123 (19), DOI: 10.1029/2017jd028247.
- Goutham N., Alonzo B., Dupré A., Plougonven R., Doctors R., Liao L., Mougeot M., Fischer A., Drobinski P., 2021, Using machine-learning methods to improve surface wind speed from the outputs of a numerical weather prediction model, Boundary-Layer Meteorology, 179, 133-161, DOI: 10.1007/s10546-020-00586-x.
- Grell G.A., Freitas S.R., 2014, A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmospheric Chemistry and Physics, 14 (10), 5233-5250, DOI: 10.5194/acp-14-5233-2014.
- Henn B., Raleigh M.S., Fisher A., Lundquist J.D., 2013, A comparison of methods for filling gaps in hourly near-surface air temperature data, Journal of Hydrometeorology, 14 (3), 929-945, DOI: 10.1175/JHM-D-12-027.1.
- Herring S.C., Christidis N., Hoell A., Kossin J.P., Schreck C.J., Stott P.A., 2018, Explaining extreme events of 2016 from a climate perspective, Bulletin of the American Meteorological Society, 99 (1), S1-S157. DOI: 10.1175/BAMSExplainingExtremeEvents2016.1.
- Hong S.-Y., Limn J.-O.J., 2006, The WRF single–moment 6–class microphysics scheme (WSM6), Journal of Korean Meteorological Society, 42 (2), 129-151.
- Hong S.Y., Lim K.S.S., Lee Y.-H., Ha J.C., Kim H.W., Ham S.J., Dudhia J., 2010, Evaluation of the WRF Double-Moment 6- Class microphysics scheme for precipitating convection, Advances in Meteorology, 10, DOI: 10.1155/2010/707253.
- Iacono M.J., Delamere J.S., Mlawer E.J., Shephard M.W., Clough S.A., Collins W.D., 2008, Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, Journal of Geophysical Research. Atmospheres, 113 (D13), DOI: 10.1029/2008JD009944.
- Jankov I., Gallus Jr. W.A, Segal M., Koch S.E., 2007, Influence of initial conditions on the WRF-ARW model QPF response to physical parameterization changes, Weather and Forecasting, 22 (3), 501-519, DOI: 10.1175/WAF998.1.
- Jiménez-Esteve E.B., Udina M., Soler M.R., Pepin N., Miró J.R., 2018, Land use and topography influence in complex terrain area: A high resolution mesoscale modeling study over the Eastern Pyrenees using the WRF model, Atmospheric Research, 202, 49-62, DOI: 10.1016/j.atmosres.2017.11.012.
- Jolliff J.K., Kindle J.C., Shulman I., Penta B., Friedrichs M.A.M., Helber R., Arnone R.A., 2009, Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment, Journal of Marine Systems, 76 (1), 64-82. DOI: 10.1016/j.jmarsys.2008.05.014.
- Krishnamurthy V., 2019, Predictability of weather and climate, Earth and Space Science, 6 (7), 1043-1056, DOI: 10.1029/2019EA000586.
- Kumar P., Kishtawal C.M., Pal P.K., 2017, Impact of ECMWF, NCEP, and NCMRWF global model analysis on the WRF model forecast over Indian Region, Theoretical and Applied Climatology, 127, 143-151, DOI: 10.1007/s00704-015-1629-1.
- Lompar M., Lalić B., Dekić L., Petrić M., 2019, Filling gaps in hourly air temperature data using debiased ERA5 data, Atmosphere, 10 (1), 13, DOI: 10.3390/atmos10010013.
- Lorenz E.N., 1963, The predictability of hydrodynamic flow, Transactions of the New York Academy of Sciences, 25 (4), 409-432, DOI: 10.1111/j.2164-0947.1963.tb01464.x.
- Los F.J., Blaas M., 2010, Complexity, accuracy and practical applicability of different biogeochemical model versions. Journal of Marine Systems, 81 (1), 44-74, DOI: 10.1016/j.jmarsys.2009.12.011.
- Manczak P., Wrona B., Wozniak A., Ogrodnik M., Folwarski M., 2020, Synoptic analysis of derecho over Poland on 11 July 2017, Submitted to Meteorology Hydrology and Water Management.
- Nakanishi M., Niino H., 2006, An improved Meller-Yamada level-3 model: its numerical stability and application to a regional prediction of advection fog, Boundary-Layer Meteorology, 119, 397-407, DOI: 10.1007/s10546-005-9030-8.
- Nakanishi M., Niino, H., 2009, Development of an improved turbulence closure model for the atmospheric boundary layer, Journal of the Meteorological Society of Japan. Serie II, 87 (5), 895-912, DOI: 10.2151/jmsj.87.895.
- Ośródka K., Szturc J., Jurczyk A., 2014, Chain of data quality algorithms for 3-D single-polarization radar reflectivity (RADVOLQC system), Meteorological Applications, 21 (2), 256-270, DOI: 10.1002/met.1323.
- Parodi A., Lagasio M., Maugeri M., Turato B., Gallus W, 2019, Observational and modelling study of a major downburst event in Liguria: The 14 October 2016 case, Atmosphere, 10 (12), 788, DOI: 10.3390/atmos10120788.
- Peckham S.E., Smirnova T.G., Benjamin S.G., Brown J.M., Kenyon J.S., 2016, Implementation of a Digital Filter Initialization in the WRF model and its application in the rapid refresh, Monthly Weather Review, 144 (1), 99-106, DOI: 10.1175/MWR-D- 15-0219.1.
- Pereira H.R., Meschiatti M.C., Pires R.C. de M., Blain G.C., 2018, On the performance of three indices of agreement: an easy-touse r-code for calculating the Willmott indices, Bragantia, 77, 394-403, DOI: 10.1590/1678-4499.2017054.
- Reichler T.J., Roads J.O., 2003, The role of boundary and initial conditions for dynamical seasonal predictability, Nonlinear Processes in Geophysics, 10 (3), 211-232, DOI: 10.5194/npg-10-211-2003.
- Roebber P.J., 2009, Visualizing multiple measures of forecast quality, Weather and Forecasting, 24 (2), 601-608, DOI: 10.1175/2008WAF2222159.1.
- Siewert J., Kroszczynski K., 2020, GIS Data as a valuable source of information for increasing resolution of the WRF model for Warsaw, Remote Sensing, 12 (11), 1881, DOI: 10.3390/rs12111881.
- Skamarock C., Klemp B., Dudhia J., Gill O., Liu Z., Berner J., Wang W., Powers G., Duda G., Barker D., Huang X., 2019, A description of the advanced research WRF model version 4, DOI: 10.5065/1dfh-6p97.
- Sulik S., Kejna M., 2020, The origin and course of severe thunderstorm outbreaks in Poland on 10 and 11 August, 2017, Bulletin of Geography, Physical Geography Series, 18 (1), 25-39, DOI: 10.2478/bgeo-2020-0003.
- Sutton C., Hamill T.M., Warner T.T., 2006, Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept, Monthly Weather Review, 134 (11), 3174-3189, DOI: 10.1175/MWR3248.1.
- Storch H., Zwiers F., 1999, Statistical analysis in climate research, Cambridge University Press, DOI: 10.1017/CBO9780511612336.
- Taszarek M., Pilguj N., Orlikowski J., Surowiecki A., Walczakiewicz S., Pilorz W., Piasecki K., Pajurek Ł., Półrolniczak M., 2019, Derecho evolving from a mesocyclone - a study of 11 August 2017 severe weather outbreak in Poland: Event analysis and high-resolution simulation, Monthly Weather Review, 147 (6), 2283-2306, DOI: 10.1175/MWR-D-18-0330.1.
- Taylor K.E., 2001, Summarizing multiple aspects of model performance in a single diagram, Journal of Geophysical Research. Atmospheres, 106 (D7), 7183-7192, DOI: 200110.1029/2000JD900719.
- Wei M., Toth Z., Zhu Y., 2010, Analysis differences and error variance estimates from multi-centre analysis data, Australian Meteorological and Oceanographic Journal, 59, 25-34, DOI: 10.22499/2.5901.005.
- Widawski A., Pilorz W., 2018, The mesoscale convective systems with bow echo radar signatures as an example of extremely severe and widespread geohazard in Poland, Environmental and Socio-Economic Studies, 6 (1), 10-16, DOI: 10.2478/environ-2018-0002.
- Willmott C.J., Wicks D.E., 1980, An Empirical method for the spatial interpolation of monthly precipitation within California, Physical Geography, 1 (1), 59-73, DOI: 10.1080/02723646.1980.10642189.
- Willmott C.J., 1981, On the validation of models, Physical Geography, 2 (2), 184-194, DOI: 10.1080/02723646.1981.10642213.
- Willmott C.J., 1984, On the evaluation of model performance in physical geography, [in:] Spatial statistics and models, G.L. Gaile, C.J. Willmott (eds.), Springer, Dordrecht, 443-460, DOI: 10.1007/978-94-017-3048-8_23.
- Willmott C.J., Robeson S.M., Matsuura K., 2012, A refined index of model performance, International Journal of Climatology, 32 (13), 2088-2094, DOI: 10.1002/joc.2419.
- Ylinen K., Räty O., Laine M., 2020, Operational statistical postprocessing of temperature ensemble forecasts with station-specific predictors, Meteorological Applications, 27 (6), e1971, DOI: 10.1002/met.1971.
- Zaidi S.M., Gisen J.I.A., 2018, Evaluation of Weather Research and Forecasting (WRF) microphysics single moment class-3 and class-6 in precipitation forecast, [in:] MATEC Web of Conferences, 03007, DOI: 10.1051/matecconf/201815003007.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fb81f50-73cf-4767-bfa3-d72d9f2b0a1c