PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Comparative Study of the Feasibility of Cellular MAX Phase Preforms Formation by Microwave-Assisted SHS and SPS Techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two methods were evaluated in terms of manufacturing of MAX phase preforms characterized with open porosity: microwave-assisted self-propagating high-temperature synthesis (SHS) and spark plasma sintering (SPS). The main purpose of fabrication of such open-porous preforms is that they can be successfully applied as a reinforcement in metal matrix composite (MMC) materials. In order to simulate the most similar conditions to microwave-assisted SHS, the sintering time of SPS was significantly reduced and the pressure was maintained at a minimum value. The chosen approach allows these two methods to be compared in terms of structure homogeneity, complete reactive charge conversion and energy effectivity. Study was performed in Ti-Al-C system, in which the samples were compacted from elemental powders of Ti, Al, C in molar ratio of 2:1:1. Manufactured materials after syntheses were subjected to SEM, XRD and STEM analyses in order to investigate their microstructures and chemical compositions. As was concluded, only microwave-assisted SHS synthesis allows the creation of MAX phases in the studied system. SPS technique led only to the formation of intermetallic secondary phases. The fabrication of MAX phases’ foams by microwave-assisted SHS presents some interesting advantages compared to conventional manufacturing methods. This work presents the characterization of foams obtained by microwave-assisted SHS comparing the results with materials produced by SPS. The analysis of SPS products for different sintering temperatures provided the better insight into the synthesis of MAX phases, supporting the established mechanism. Dissimilarities in the heating mechanisms that lead to the differing synthesis products were also discussed.
Słowa kluczowe
Twórcy
autor
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering Chair of Foundry, Plastics and Automation, 5 Łukasiewicza Str., 50-371, Wrocław, Poland
autor
  • Tecnalia Industry and Transport Division, Mikeletegi Pasealekua 2, E20009, Parque Científico y Tecnológico de Gipuzkoa, San Sebastián, Spain
autor
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering Chair of Foundry, Plastics and Automation, 5 Łukasiewicza Str., 50-371, Wrocław, Poland
autor
  • Tecnalia Industry and Transport Division, Mikeletegi Pasealekua 2, E20009, Parque Científico y Tecnológico de Gipuzkoa, San Sebastián, Spain
Bibliografia
  • [1] T. Thomas, C. R. Bowen, J. Alloys Compd. 602, 72-77 (2014).
  • [2] Y. Bai, H. Zhang, X. He, C. Zhu, R. Wang, Y. Sun, G. Chen, P. Xiao, Int. J. Refract. Met. Hard Mater. 45, 58-63 (2014).
  • [3] L. Hu, R. Benitez, S. Basu, I. Karaman, M. Radovic, Acta Mater. 50, 6266-6277 (2012).
  • [4] W. Jeitschko, H. Nowotny, Monatshefte fur Chemie 98, 329-337 (1967).
  • [5] M. W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, Wiley-VCH (2013).
  • [6] C. Peng, C. Wang, Y. Song, Y. Huang, Mater. Sci. Eng. 428, 54-58 (2006).
  • [7] C. L. Yeh, Y. G. Shen, J. Alloys Compd. 466, 308-313 (2008).
  • [8] A. Zhou, C. Wang, Y Hunag, Ceram. Int. 3111-3115 (2013).
  • [9] I. P. Borovinskaya, A. A. Gromov, E. A. Levashov, Y. M. Maksimov, A. S. Mukasyan, A. S. Rogachev, Concise Encyclopedia of Self-propagating High-temperature Synthesis, Elsevier (2017).
  • [10] Y. Khoptiar, I. Gotman, Mater. Lett. 57, 72-76 (2002).
  • [11] C. L. Yeh, Y. G. Shen, J. Alloys Compd. 470, 424-428 (2009).
  • [12] J. Lis, L. Chlubny, K. Chabior, P. Chachlowska, C. Kapusta, Arch. Metall. Mater. 60 (2), 859-863 (2015).
  • [13] A. Sedghi, R. Vahed, Iran. J. Mater. Sci. Eng. 11, 40-47 (2014).
  • [14] A. Hendaoui, D. Vrel, A. Amara, P. Langlois, M. Andasmas, M. Guerioune, J. Eur. Ceram. Soc. 30, 1049-1057 (2010).
  • [15] R. Rosa, P. Veronesi, C. Leonelli, A. B. Corradi, Int. J. SHS 18, 163-172 (2009).
  • [16] R. Rosa, L. Trombi, P. Veronesi, C. Leonelli, Int. J. SHS 26, 4, 221-233 (2017).
  • [17] R. Rosa, P. Veronesi, S. Han, V. Casalegno, M. Salvo, E. Colombini, C. Leonelli, M. Ferraris, J. Eur. Ceram. Soc. 33, 1707-1719 (2013).
  • [18] R. Rosa, P. Veronesi, C. Leonelli, Chem. Eng. Process. 71, 2-18 (2013).
  • [19] K. Naplocha, K. Granat, Arch. Foundry Eng. 8 (4), 153-156 (2008).
  • [20] K. Naplocha, K. Granat, J. Achiev. Mater. Manuf. Eng. 26 (2), 203-206 (2008).
  • [21] K. Naplocha, Composite materials reinforced with preforms produced in the high-temperature synthesis process in the microwave field, Publishing House of Wrocław University of Science and Technology, Wrocław (2013).
  • [22] A. Dmitruk (Koniuszewska), K. Naplocha, Compos. Theory Pract. 16 (2), 109-112 (2016).
  • [23] A. Dmitruk, K. Naplocha, Compos. Theory Pract. 17 (2), 92-96 (2017).
  • [24] A. Dmitruk, A. Żak, K. Naplocha, W. Dudzinski, J. Morgiel, Mater. Charact. 146, 182-188 (2018).
  • [25] C. C. Hwang, S. L. Chung, J. Mater. Sci. 39, 2073-2080 (2004).
  • [26] S. Hashimoto, N. Nishina, K. Hirao, Y. Zhou, H. Hyuga, S. Honda, Y. Iwamoto, Mater. Res. Bull. 47, 1162-1168 (2012).
  • [27] A. Dmitruk, K. Naplocha, Manufacturing of Al Alloy Matrix Composite Materials Reinforced with MAX Phases, Archives of Foundry Engineering 18 (2), 198-202 (2018).
  • [28] S. Grasso, Y. Sakka, J. Ceram. Soc. Jpn. 121 (5), 524-526 (2013).
  • [29] D. M. Hulbert, A. Anders, D. V. Dudina, J. Andersson, D. Jiang, C. Unuvar, U. Anselmi-Tamburini, E. J. Lavernia, A. K. Mukherjee, J. Appl. Phys. 104, 033305 (2008).
  • [30] J. M. Hill, M. J. Jennings, Appl. Math. Modell. 17, 369-379 (1993).
  • [31] N. Yoshikawa, J. Microwave Power Electromagnet. Energy 44 (1), 4-13 (2010).
Uwagi
EN
1. The SPS trials and XRD analysis were carried out with support of the KMM-VIN Research Fellowship, 01-30.11.2017.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fb80b21-c0ba-41ce-a557-d783db5f6b56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.