PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of the Thermochemical Degradation of PET: An Alternative Method of Recycling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plastics play an important role in our lives due to their versatility, lightness and low production cost. They can be found in almost every industry such as automotive, construction, packaging, medical, and engineering applications among others. Polyethylene terephthalate (PET) is one of the most consumed plastics worldwide in the packaging sector, which is why its useful life is usually very short, causing serious problems due to high disposal in the environment and urban landfills. The thermochemical degradation of PET has been studied by some researchers and it has been found that its degradation products are of high added value, which is why this work focuses on presenting the results obtained in the literature.
Rocznik
Strony
319--330
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, University of Guanajuato, Carretera Salamanca - Valle de Santiago km 3.5 + 1.8 Community of Palo Blanco, Salamanca, Gto., 36885, Mexico
  • Department of Mechanical Engineering, University of Guanajuato, Carretera Salamanca - Valle de Santiago km 3.5 + 1.8 Community of Palo Blanco, Salamanca, Gto., 36885, Mexico
  • Universidad Veracruzana, Lomas del Estadio, 91090 Xalapa, Veracruz, Mexico
  • Department of Mechanical Engineering. University of Veracruz, Adolfo Ruiz Cortínez s/n, Costa Verde, Boca del Rio, Ver., 94294, México
Bibliografia
  • 1. Aboulkas, A., El harfi, K., & El Bouadili, A. (2010). Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Conversion and Management, 51(7), 1363–1369. https://doi.org/10.1016/j.enconman.2009.12.017
  • 2. Ahmad, I., Ismail Khan, M., Ishaq, M., Khan, H., Gul, K., & Ahmad, W. (2013). Catalytic efficiency of some novel nanostructured heterogeneous solid catalysts in pyrolysis of HDPE. Polymer Degradation and Stability, 98(12), 2512–2519. https://doi.org/10.1016/j.polymdegradstab.2013.09.009
  • 3. Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G., & Dutta, A. (2017). A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environmental Management, 197(1408), 177–198. https://doi.org/10.1016/j.jenvman.2017.03.084
  • 4. Ali, M.F., Ahmed, S., & Qureshi, M.S. (2011). Catalytic coprocessing of coal and petroleum residues with waste plastics to produce transportation fuels. Fuel Processing Technology, 92(5), 1109–1120. https://doi.org/10.1016/j.fuproc.2011.01.006
  • 5. Alston, S.M., Clark, A.D., Arnold, J.C., & Stein, B.K. (2011). Environmental impact of pyrolysis of mixed WEEE plastics part 1: Experimental pyrolysis data. Environmental Science and Technology, 45(21), 9380–9385. https://doi.org/10.1021/es201664h
  • 6. Artetxe, M., Lopez, G., Amutio, M., Elordi, G., Olazar, M., & Bilbao, J. (2010). Operating conditions for the pyrolysis of poly-(ethylene terephthalate) in a conical spouted-bed reactor. Industrial and Engineering Chemistry Research, 49(5), 2064–2069. https://doi.org/10.1021/ie900557c
  • 7. Bridgwater, A.V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
  • 8. Calderón Sáenz, F. (2016). La Producción de Combustibles Vehiculares a partir de Plásticos de Deshecho. 1–226. http://www.cynarplc.com
  • 9. Cardona, S.C., & Corma, A. (2000). Tertiary recycling of polypropylene by catalytic cracking in a semibatch stirred reactor. Use of spent equilibrium FCC commercial catalyst. Applied Catalysis B: Environmental, 25(2–3), 151–162. https://doi.org/10.1016/S0926-3373(99)00127-7
  • 10. Claudinho, J.E.M., & Ariza, O.J.C. (2017). A study on thermo - Catalytic degradation of PET (polyethylene terephthalate) waste for fuel production and chemical products. Chemical Engineering Transactions, 57, 259–264. https://doi.org/10.3303/CET1757044
  • 11. Dhahak, A., Hild, G., Rouaud, M., Mauviel, G., & Burkle-Vitzthum, V. (2019). Slow pyrolysis of polyethylene terephthalate: Online monitoring of gas production and quantitative analysis of waxy products. Journal of Analytical and Applied Pyrolysis, 142(July), 104664. https://doi.org/10.1016/j.jaap.2019.104664
  • 12. Diaz-Silvarrey, L.S., McMahon, A., & Phan, A.N. (2018). Benzoic acid recovery via waste poly(ethylene terephthalate) (PET) catalytic pyrolysis using sulphated zirconia catalyst. Journal of Analytical and Applied Pyrolysis, 134(August), 621–631. https://doi.org/10.1016/j.jaap.2018.08.014
  • 13. Dou, B., Lim, S., Kang, P., Hwang, J., Song, S., Yu, T.U., & Yoon, K.D. (2007). Kinetic study in modeling pyrolysis of refuse plastic fuel. Energy and Fuels, 21(3), 1442–1447. https://doi.org/10.1021/ef060594c
  • 14. Du, S., Valla, J.A., Parnas, R.S., & Bollas, G.M. (2016). Conversion of Polyethylene Terephthalate Based Waste Carpet to Benzene-Rich Oils through Thermal, Catalytic, and Catalytic Steam Pyrolysis. ACS Sustainable Chemistry and Engineering, 4(5), 2852–2860. https://doi.org/10.1021/acssuschemeng.6b00450
  • 15. Elordi, G., Olazar, M., Lopez, G., Amutio, M., Artetxe, M., Aguado, R., & Bilbao, J. (2009). Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 85(1–2), 345–351. https://doi.org/10.1016/j.jaap.2008.10.015
  • 16. Çepelioğullar Ö. & Pütün A.E. (2013). Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis. Energy Conversion and Management 75, 263–270. https://doi.org/10.1016/j.enconman.2013.06.036
  • 17. Garforth, A.A., Lin, Y.H., Sharratt, P.N., & Dwyer, J. (1998). Production of hydrocarbons by catalytic degradation of high density polyethylene in a laboratory fluidised-bed reactor. Applied Catalysis A: General, 169(2), 331–342. https://doi.org/10.1016/S0926-860X(98)00022-2
  • 18. Hang, J., Haoxi, B., Ying, L., & Rui, W. (2020). Catalytic Fast Pyrolysis of Poly (Ethylene Terephthalate) (PET) with Zeolite and Nickel Chloride. Polymers.
  • 19. Heikkinen, J.M., Hordijk, J.C., De Jong, W., & Spliethoff, H. (2004). Thermogravimetry as a tool to classify waste components to be used for energy generation. Journal of Analytical and Applied Pyrolysis, 71(2), 883–900. https://doi.org/10.1016/J.JAAP.2003.12.001
  • 20. Hong, S.-J., Oh, S. C., Lee, H.-P., Kim, H.T., & Yoo, K.-O. (1999). A Study on the Pyrolysis Characteristics of Poly ( vinyl chloride ). Journal of the Korean Institute of Chemical Engineers, 37(4), 515–521. https://pdfs.semanticscholar.org/ba47/466c6c87e970bcd6f699c835bec5ebf95089.pdf
  • 21. Huang, Y.W., Chen, M.Q., Li, Q.H., & Xing, W. (2018). A critical evaluation on chemical exergy and its correlation with high heating value for single and multi-component typical plastic wastes. Energy, 156, 548–554. https://doi.org/10.1016/j.energy.2018.05.116
  • 22. Islam, M.N., Islam, M.N., & Beg, M.R.A. (2004). The fuel properties of pyrolysis liquid derived from urban solid wastes in Bangladesh. Bioresource Technology, 92(2), 181–186. https://doi.org/10.1016/j.biortech.2003.08.009
  • 23. Jung, S.H., Cho, M.H., Kang, B.S., & Kim, J.S. (2010). Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology, 91(3), 277–284. https://doi.org/10.1016/j.fuproc.2009.10.009
  • 24. Venkatachalam S., Nayak S.G., Labde J.V., Gharal P.R., Rao K., Kelkar A.K. 2012. Degradation and recyclability of Poly (Ethylene Terephthalate). In: Intech,75-98. http://gx.doi.org/10.5772/48612.
  • 25. Kalargaris, I., Tian, G., & Gu, S. (2017a). Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Processing Technology, 157, 108–115. https://doi.org/10.1016/j.fuproc.2016.11.016
  • 26. Kalargaris, I., Tian, G., & Gu, S. (2017b). The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy, 131, 179–185. https://doi.org/10.1016/j.energy.2017.05.024
  • 27. Kalargaris, I., Tian, G., & Gu, S. (2018). Experimental characterisation of a diesel engine running on polypropylene oils produced at di ff erent pyrolysis temperatures. Fuel, 211(July 2017), 797–803. https://doi.org/10.1016/j.fuel.2017.09.101
  • 28. Kim, S.S., & Kim, S. (2004). Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor. Chemical Engineering Journal, 98(1–2), 53–60. https://doi.org/10.1016/S1385-8947(03)00184-0
  • 29. Kodera, Y., Ishihara, Y., & Kuroki, T. (2006). Novel process for recycling waste plastics to fuel gas using a moving-bed reactor. Energy and Fuels, 20(1), 155–158. https://doi.org/10.1021/ef0502655
  • 30. Kongsupapkul, P., Cheenkachorn, K., & Tontisirin, S. (2017). Effects of MgO-ZSM-23 Zeolite Catalyst on the Pyrolysis of PET Bottle Waste. The Journal of King Mongkut’s University of Technology North Bangkok, 10(3), 205–211. https://doi.org/10.14416/j.ijast.2017.08.004
  • 31. Kumagai, S., Hasegawa, I., Grause, G., Kameda, T., & Yoshioka, T. (2015). Thermal decomposition of individual and mixed plastics in the presence of CaO or Ca(OH)2. Journal of Analytical and Applied Pyrolysis, 113, 584–590. https://doi.org/10.1016/j.jaap.2015.04.004
  • 32. Li, C., Ataei, F., Atashi, F., Hu, X., & Gholizadeh, M. (2021). Catalytic pyrolysis of polyethylene terephthalate over zeolite catalyst: Characteristics of coke and the products. International Journal of Energy Research, 45(13), 19028–19042. https://doi.org/10.1002/er.7078
  • 33. Lin, H.T., Huang, M.S., Luo, J.W., Lin, L.H., Lee, C.M., & Ou, K.L. (2010). Hydrocarbon fuels produced by catalytic pyrolysis of hospital plastic wastes in a fluidizing cracking process. Fuel Processing Technology, 91(11), 1355–1363. https://doi.org/10.1016/j.fuproc.2010.03.016
  • 34. Martín-Gullón, I., Esperanza, M., & Font, R. (2001). Kinetic model for the pyrolysis and combustion of poly-(ethylene terephthalate) (PET). Journal of Analytical and Applied Pyrolysis, 58–59, 635–650. https://doi.org/10.1016/S0165-2370(00)00141-8
  • 35. Miandad, R., Barakat, M.A., Aburiazaiza, A.S., Rehan, M., Ismail, I.M.I., & Nizami, A.S. (2017). Effect of plastic waste types on pyrolysis liquid oil. International Biodeterioration and Biodegradation, 119, 239–252. https://doi.org/10.1016/j.ibiod.2016.09.017
  • 36. Miskolczi, N., Angyal, A., Bartha, L., & Valkai, I. (2009). Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Processing Technology, 90(7–8), 1032–1040. https://doi.org/10.1016/j.fuproc.2009.04.019
  • 37. Murphy, F., McDonnell, K., Butler, E., & Devlin, G. (2012). The evaluation of viscosity and density of blends of Cyn-diesel pyrolysis fuel with conventional diesel fuel in relation to compliance with fuel specifications en 590:2009. Fuel, 91(1), 112–118. https://doi.org/10.1016/j.fuel.2011.06.032
  • 38. Othman, N., Basri, N.E.A., & Yunus, M.N.M. (2008). Determination of Physical and Chemical Characteristics of Electronic Plastic Waste (Ep-Waste) Resin Using Proximate and Ultimate Analysis Method. Iccbt, 16, 169–180.
  • 39. Park, C., Kim, S., Kwon, Y., Jeong, C., Cho, Y., Lee, C.G., Jung, S., Choi, K.Y., & Lee, J. (2020). Pyrolysis of polyethylene terephthalate over carbon-supported pd catalyst. Catalysts, 10(5), 1–12. https://doi.org/10.3390/catal10050496
  • 40. Park, S.S., Seo, D.K., Lee, S.H., Yu, T.U., & Hwang, J. (2012). Study on pyrolysis characteristics of refuse plastic fuel using lab-scale tube furnace and thermogravimetric analysis reactor. Journal of Analytical and Applied Pyrolysis, 97, 29–38. https://doi.org/10.1016/J.JAAP.2012.06.009
  • 41. Parthasarathy, P., & Narayanan, S.K. (2014). Pyrolysis of Mixtures of Palm Shell and Polystyrene: An Optional Method to Produce a High-Grade of Pyrolysis Oil. Environmental Progress & Sustainable Energy, 33(3), 676–680. https://doi.org/10.1002/ep
  • 42. Pet, T., & Chloride, N. (2020). Catalytic Fast Pyrolysis of Poly ( Ethylene.
  • 43. Plastics Europe, 2019. (2019). Plásticos – Situación en 2019. Plastic Europe. https://www.plasticseurope.org/es/resources/publications/2511-plasticos-situacion-en-2019
  • 44. Ratio, C., & Engine, D. (2021). Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine.
  • 45. Sarker, M., Kabir, A., Rashid, M.M., Molla, M., & Din Mohammad, A.S.M. (2011). Waste Polyethylene Terephthalate (PETE-1) Conversion into Liquid Fuel. Journal of Fundamentals of Renewable Energy and Applications, 1, 1–5. https://doi.org/10.4303/jfrea/r101202
  • 46. Scott, D.S., Czernik, S.R., Piskorz, J., & Radlein, D.S.A.G. (1990). Fast Pyrolysis of Plastic Wastes. Energy and Fuels, 4(4), 407–411. https://doi.org/10.1021/ef00022a013
  • 47. Sharma, B.K., Moser, B.R., Vermillion, K.E., Doll, K.M., & Rajagopalan, N. (2014). Production , characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Processing Technology, 122, 79–90. https://doi.org/10.1016/j.fuproc.2014.01.019
  • 48. Ucar, S., Karagoz, S., Ozkan, A.R., & Yanik, J. (2005). Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel, 84(14–15), 1884–1892. https://doi.org/10.1016/j.fuel.2005.04.002
  • 49. Usman, N., & Masirin, M.I.M. (2019). Performance of asphalt concrete with plastic fibres. In Use of Recycled Plastics in Eco-efficient Concrete. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102676-2.00020-7
  • 50. Vijayakumar, C.T., & Fink, J.K. (1982). Pyrolysis studies of aromatic polyesters. Thermochimica Acta, 59(1), 51–61. https://doi.org/10.1016/0040-6031(82)87092-5
  • 51. Yoon, W.L., Park, J.S., Jung, H., Lee, H.T., & Lee, D.K. (1999). Optimization of pyrolytic coprocessing of waste plastics and waste motor oil into fuel oils using statistical pentagonal experimental design. Fuel, 78(7), 809–813. https://doi.org/10.1016/S0016-2361(98)00207-5
  • 52. Yoshioka, T., Grause, G., Eger, C., Kaminsky, W., & Okuwaki, A. (2004). Pyrolysis of poly(ethylene terephthalate) in a fluidised bed plant. Polymer Degradation and Stability, 86(3), 499–504. https://doi.org/10.1016/j.polymdegradstab.2004.06.001
  • 53. Yoshioka, T., Handa, T., Grause, G., Lei, Z., Inomata, H., & Mizoguchi, T. (2005). Effects of metal oxides on the pyrolysis of poly(ethylene terephthalate). Journal of Analytical and Applied Pyrolysis, 73(1), 139–144. https://doi.org/10.1016/j.jaap.2005.01.004
  • 54. Yoshioka, T., Kitagawa, E., Mizoguchi, T., & Okuwaki, A. (2004). High selective conversion of poly(ethylene terephthalate) into oil using Ca(OH)2. Chemistry Letters, 33(3), 282–283. https://doi.org/10.1246/cl.2004.282
  • 55. Zannikos, F., Kalligeros, S., Anastopoulos, G., & Lois, E. (2013). Converting Biomass and Waste Plastic to Solid Fuel Briquettes. Journal of Renewable Energy, 2013, 1–9. https://doi.org/10.1155/2013/360368
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fb7ac79-d9dc-4162-9e59-333a0446bc2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.