PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Local Recovery of Sub-Crustal Stress Due to Mantle Convection from Satellite-to-Satellite Tracking Data

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two integral transformations between the stress function, differentiation of which gives the meridian and prime vertical components of the sub-crustal stress due to mantle convection, and the satellite-to-satellite tracking (SST) data are presented in this article. In the first one, the SST data are the disturbing potential differences between twin-satellites and in the second one the line-of-sight (LOS) gravity disturbances. It is shown that the corresponding integral kernels are well-behaving and therefore suitable for inversion and recovery of the stress function from the SST data. Recovery of the stress function and the stress components is also tested in numerical experiments using simulated SST data. Numerical studies over the Himalayas show that inverting the disturbing potential differences leads to a smoother stress function than from inverting LOS gravity disturbances. Application of the presented integral formulae allows for recovery of the stress from the satellite mission GRACE and its planned successor.
Czasopismo
Rocznik
Strony
904--929
Opis fizyczny
Bibliogr. 71 poz.
Twórcy
autor
  • NTIS – New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Plzeň, Czech Republic
autor
  • Department of Engineering Science, University West, Trollhättan, Sweden
Bibliografia
  • Arabelos, D.N., and D. Tsoulis (2013), The exploitation of state of the art digital terrain databases and combined or satellite-only Earth gravity models for the estimation of the crust-mantle interface over oceanic regions, Geophys. J. Int. 193, 3, 1343-1352, DOI: 10.1093/gji/ggt081.
  • Block, A.E., R.E. Bell, and M. Studinger (2009), Antarctic crustal thickness from satellite gravity: Implications for the Transantarctic and Gamburtsev Subglacial Mountains, Earth Planet. Sci. Lett. 288, 1-2, 194-203, DOI: 10.1016/j.epsl.2009.09.022.
  • Bouman, J. (1998), Quality of regularization methods, DEOS Report no. 98.2, Delft University Press, Delft, The Netherlands.
  • Braitenberg, C., and J. Ebbing (2009a), New insights into the basement structure of the West Siberian Basin from forward and inverse modeling of GRACE satellite gravity data, J. Geophys. Res. Solid Earth 114, B06402, DOI: 10.1029/2008JB005799.
  • Braitenberg, C., and J. Ebbing (2009b), The GRACE-satellite gravity and geoid fields in analysing large-scale, cratonic or intracratonic basins, Geophys. Prospect. 57, 4, 559-571, DOI: 10.1111/j.1365-2478.2009.00793.x.
  • Case, K., G. Kruizinga, and S.-C. Wu (2010), GRACE level 1B data product user handbook, Version 1.3, JPL D22027, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA.
  • Chen, J.L., C.R. Wilson, B.D. Tapley, and S. Grand (2007), GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake, Geophys. Res. Lett. 34, 13, L13302, DOI: 10.1029/2007GL030356.
  • Choi, S., C.W. Oh, and H. Luehr (2006), Tectonic relation between northeastern China and the Korean peninsula revealed by interpretation of GRACE satellite gravity data, Gondwana Res. 9, 1-2, 62-67, DOI: 10.1016/j.gr.2005. 06.002.
  • Dai, C., C.K. Shum, R. Wang, L. Wang, J. Guo, K. Shang, and B. Tapley (2014), Improved constraints on seismic source parameters of the 2011 Tohoku earthquake from GRACE gravity and gravity gradient changes, Geophys. Res. Lett. 41, 6, 1929-1936, DOI:10.1002/2013GL059178.
  • ESA (1999), Gravity field and steady-state ocean circulation mission, Report for mission selection of the four candidate earth explorer missions, ESA SP- 1233(1), European Space Agency, ESA Publications Division, Noordwijk, The Netherlands.
  • Eshagh, M. (2011a), Sequential Tikhonov regularization: an alternative way for inverting satellite gradiometric data, Z. Vermessungs. 136, 2, 113-121.
  • Eshagh, M. (2011b), The effect of spatial truncation error on integral inversion of satellite gravity gradiometry data, Adv. Space Res. 47, 7, 1238-1247, DOI: 10.1016/j.asr.2010.11.035.
  • Eshagh, M. (2014), From satellite gradiometry data to sub-crustal stress due to mantle convection, Pure Appl. Geophys. 171, 9, 2391-2406, DOI: 10.1007/ s00024-014-0847-2.
  • Eshagh, M. (2015), On the relation between Moho and sub-crustal stress due to mantle convection, J. Geophys. Eng. 12, 1, 1-11, DOI: 10.1088/1742- 2132/12/1/1.
  • Eshagh, M. (2016), Integral approaches to determine sub-crustal stress from terrestrial gravimetric data, Pure Appl. Geophys. 173, 3, 805-825, DOI: 10.1007/ s00024-015-1107-9.
  • Eshagh, M., and M. Romeshkani (2015), Determination of sub-lithospheric stress due to mantle convection using GOCE gradiometric data over Iran, J Appl. Geophys. 122, 11-17, DOI: 10.1016/j.jappgeo.2015.08.001.
  • Eshagh, M., and R. Tenzer (2015), Sub-crustal stress determined using gravity and crust structure models, Computat. Geosci. 19, 1, 115-125, DOI: 10.1007/ s10596-014-9460-9.
  • Fischell, R.E., and V.L. Pisacane (1978), A drag-free Lo-Lo satellite system for improved gravity field measurements. In: I. Mueller (ed.), Proc. Ninth Geodesy/Solid Earth and Ocean Physics (GEOP) Int. Symp. “Applications of Geodesy to Geodynamics”, 2-5 October 1978, Columbus Ohio State University, USA, Report No. 280, 213-219.
  • Fu, R.S. (1986), A numerical study of the effects of boundary conditions on mantle convection models constrained to fit the low degree geoid coefficients, Phys. Earth Planet. Int. 44, 3, 257-263, DOI: 10.1016/0031-9201(86) 90074-9.
  • Fu, R.S. (1990), The Earth’s geoid anomalies and the physical mathematical model of the mantle convection, Chinese J. Geophys. 33 (Suppl. II), 457-468 (in Chinese).
  • Hajela, D.P. (1974), Improved procedures for the recovery of 5° mean gravity anomalies from ATS-6/GEOS-3 satellite-to-satellite range-rate observations, Report No. 276, Department of Geodetic Science, Ohio State University, Columbus, USA.
  • Han, S.-C., J. Sauber, S.B. Luthcke, C. Ji, and F.F. Pollitz (2008), Implications of postseismic gravity change following the great 2004 Sumatra–Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data, J. Geophys. Res. 113, B11, B11413, DOI:10.1029/ 2008JB005705.
  • Hansen, P.C. (1998), Rank-deficient and Discrete Ill-posed Problems: Numerical Aspects of Linear Inversion, SIAM, Philadelphia, 243 pp.
  • Hansen, P.C. (2007), Regularization tools, version 4.0 for Matlab 7.3, Numer. Algorithms 46, 2, 189-194, DOI: 10.1007/s11075-007-9136-9.
  • Hofmann-Wellenhof, B., and H. Moritz (2005), Physical Geodesy, 2nd ed., Springer, Wien, 403 pp.
  • Huang, P.H., and R.S. Fu (1982), The mantle convection pattern and force source mechanism of recent tectonic movement in China, Phys. Earth Planet. Int. 28, 3, 261-268, DOI: 10.1016/0031-9201(82)90007-3.
  • Jekeli, C. (1999), The determination of gravitational potential differences from satellite-to-satellite tracking, Celest. Mech. Dyn. Astron. 75, 2, 85-101, DOI: 10.1023/A:1008313405488.
  • Kaban, M.K., and V. Trubitsyn (2012), Density structure of the mantle transition zone and the dynamic geoid, J. Geodyn. 59-60, 183-192, DOI: 10.1016/ j.jog.2012.02.007.
  • Kaban, M.K., M. Tesauro, and S. Cloetingh (2010), An integrated gravity model for Europe’s crust and upper mantle, Earth Planet. Sci. Lett. 296, 3-4, 195-209, DOI: 10.1016/j.epsl.2010.04.041.
  • Keller, W., and M.A. Sharifi (2005), Satellite gradiometry using a satellite pair, J. Geodesy 78, 9, 544-557, DOI: 10.1007/s00190-004-0426-x.
  • Kiamehr, R., and L.E. Sjöberg (2006), Impact of a precise geoid model in studying tectonic structures – A case study in Iran, J. Geodyn. 42, 1-3, 1-11, DOI: 10.1016/j.jog.2006.04.001.
  • Kiamehr, R., M. Eshagh, and L.E. Sjöberg (2008), Interpretation of general geophysical patterns in Iran based on GRACE gradient component analysis, Acta Geophys. 56, 2, 440-454, DOI: 10.2478/s11600-007-0050-2.
  • Köther, N., H.-J. Götze, B.D. Gutknecht, T. Jahr, G. Jentzsch, O.H. Lücke, R. Mahatsente, R. Sharma, and S. Zeumann (2012), The seismically active Andean and Central American margins: Can satellite gravity map lithospheric structures? J. Geodyn. 59-60, 207-218, DOI: 10.1016/j.jog.2011.11.004.
  • Li, J., J. Chen, and Z. Zhang (2014), Seismologic applications of GRACE timevariable gravity measurements, Earthq. Sci. 27, 2, 229-245, DOI: 10.1007/ s11589-014-0072-1.
  • Liu, H.S. (1977), Convection pattern and stress system under the African plate, Phys. Earth Planet. Int. 15, 1, 60-68, DOI: 10.1016/0031-9201(77)90010-3.
  • Liu, H.S. (1978), Mantle convection pattern and subcrustal stress under Asia, Phys. Earth Planet. Int. 16, 3, 247-256, DOI: 10.1016/0031-9201(78)90018-3.
  • Liu, H.S. (1980a), Mantle convection and subcrustal stress under Australia, Mod. Geol. 7, 1, 29-36.
  • Liu, H.S. (1980b), Mantle convection and subcrustal stress under United States, Mod. Geol. 7, 81-93.
  • Liu, H.S., E.S. Chang, and G.H. Wyatt (1976), Small-scale mantle convection system and stress field under Pacific plate, Phys. Earth Planet. Int. 13, 3, 212- 217, DOI: 10.1016/0031-9201(76)90095-9.
  • Matsuo, K., and K. Heki (2011), Coseismic gravity changes of the 2011 Tohoku-Oki earthquake from satellite gravimetry, Geophys. Res. Lett. 38, 7, L00G12, DOI:10.1029/2011GL049018.
  • McAdoo, D.C., S.L. Farrell, S.W. Laxon, H.J. Zwally, D. Yi, and A.L. Ridout (2008), Arctic Ocean gravity field derived from ICESat and ERS-2 altimetry: Tectonic implications, J. Geophys. Res. 113, B5, B05408, DOI:10.1029/2007JB005217.
  • McKenzie, D.P. (1967), Some remarks on heat flow and gravity anomalies, J. Geophys. Res. 72, 24, 6261-6273, DOI:10.1029/JZ072i024p06261.
  • McNutt, M. (1980), Implication of regional gravity for state of stress in the Earth’s crust and upper mantle, J Geophys. Res. 85, B11, 6377-6396, DOI:10.1029/JB085iB11p06377.
  • Mikhailov, V., S. Tikhotsky, M. Diament, I. Panet, and V. Ballu (2004), Can tectonic processes be recovered from new gravity satellite data?, Earth Planet. Sci. Lett. 228, 3-4, 281-297, DOI: 10.1016/j.epsl.2004.09.035.
  • Mikhailov, V., V. Lyakhovsky, I. Panet, Y. van Dinther, M. Diament, T. Gerya, O. deViron, and E. Timoshkina (2013), Numerical modelling of postseismic rupture propagation after the Sumatra 26.12.2004 earthquake constrained by GRACE gravity data, Geophys. J. Int. 194, 1, 640-650, DOI:10.1093/gji/ggt145.
  • Moritz, H. (2000), Geodetic reference system 1980, J. Geodesy 74, 1, 128-133, DOI: 10.1007/s001900050278.
  • Panet, I., F. Pollitz, V. Mikhailov, M. Diament, P. Banerjee, and K. Grijalva (2010), Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra–Andaman earthquake, Geochem. Geophys. Geosyst. 11, 6, Q06008, DOI: 10.1029/2009GC002905.
  • Pavlis, N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor (2012), The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res. 117, B4, B04406, DOI: 10.1029/2011JB008916.
  • Pick, M. (1994), The geoid and tectonic forces. In: P. Vaníček and N.T. Christou (eds.), Geoid and its Geophysical Interpretations, CRC Press, Boca Raton, 239-253.
  • Pick, M., and I. Charvátová-Jakubcová (1988), Modification of the Runcorn’s equations on the convection flows, Stud. Geophys. Geod. 32, 1, 47-53, DOI: 10.1007/BF01629000.
  • Pick, M., J. Pícha, and V. Vyskočil (1973), Theory of the Earth’s Gravity Field, Elsevier, Amsterdam, 538 pp.
  • Reigber, C. (1989), Gravity field recovery from satellite tracking data. In: F. Sansó and R. Rummel (eds.), Theory of Satellite Geodesy and Gravity Field Determination, Lecture Notes in Earth Sciences, Vol. 25, Springer, Berlin Heidelberg, 197-234.
  • Reigber, C., H. Luehr, and P. Schwintzer (2002), CHAMP mission status, Adv. Space Res. 30, 2, 129-134, DOI: 10.1016/S0273-1177(02)00276-4.
  • Ricard, Y., L. Fleitout, and C. Froidevaux (1984), Geoid heights and lithospheric stresses for a dynamic Earth, Ann. Geophys. 2, 3, 267-286.
  • Ricard, Y., F. Chambat, and C. Lithgow-Bertelloni (2006), Gravity observations and 3D structure of the Earth, C. R. Geosci. 338, 14-15, 992-1001, DOI: 10.1016/j.crte.2006.05.013.
  • Rummel, R. (1980), Geoid heights, geoid height differences, and mean gravity anomalies from ‘low-low’ satellite-to-satellite tracking – an error analysis, Report No. 306, Department of Geodetic Science, Ohio State University, Columbus, USA.
  • Runcorn, S.K. (1964), Satellite gravity measurements and laminar viscous flow model of the Earth mantle, J. Geophys. Res. 69, 20, 4389-4394, DOI:10.1029/JZ069i020p04389.
  • Runcorn, S.K. (1967), Flow in the mantle inferred from the low degree harmonics of the geopotential, Geophys. J. Int. 14, 1-4, 375-384, DOI: 10.1111/j.1365- 246X.1967.tb06253.x.
  • Seeber, G. (2003), Satellite Geodesy, 2nd ed., Walter de Gruyter, Berlin, 589 pp.
  • Shin, Y.H., H. Xu, C. Braitenberg, J. Fang, and Y. Wang (2007), Moho undulations beneath Tibet from GRACE-integrated gravity data, Geophys. J. Int. 170, 3, 971-985, DOI: 10.1111/j.1365-246X.2007.03457.x.
  • Souriau, M., and A. Souriau (1983), Global tectonics and the geoid, Phys. Earth Planet. Int. 33, 2, 126-136, DOI: 10.1016/0031-9201(83)90145-0.
  • Šprlák, M., and P. Novák (2014a), Integral transformations of deflections of the vertical onto satellite-to-satellite tracking and gradiometric data, J. Geodesy 88, 7, 643-657, DOI: 10.1007/s00190-014-0711-2.
  • Šprlák, M., and P. Novák (2014b), Integral transformations of gradiometric data onto GRACE type of observable, J. Geodesy 88, 4, 377-390, DOI: 10.1007/s00190-013-0689-1.
  • Sun, W. (2014), Recent advances of computing coseismic deformations in theory and applications, Earthq. Sci. 27, 2, 217-227, DOI: 10.1007/s11589-014- 0077-9.
  • Sun, W., and S. Okubo (2004), Coseismic deformations detectable by satellite gravity missions: A case study of Alaska (1964, 2002) and Hokkaido (2003) earthquakes in the spectral domain, J. Geophys. Res. 109, B4, B04405, DOI:10.1029/2003JB002554.
  • Tapley, B.D., S. Bettadpur, M. Watkins, and C. Reigber (2004), The gravity recovery and climate experiment: mission overview and early results, Geophys. Res. Lett. 31, 9, L09607, DOI:10.1029/2004GL019920.
  • Tedla, G.E., M.V.D. Meijde, A.A. Nyblade, and F.D.V.D. Meer (2011), A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution, Geophys. J. Int. 187, 1, 1-9, DOI:10.1111/j.1365- 246X.2011.05140.x.
  • Tenzer, R., and M. Eshagh (2015), Subduction generated sub-crustal stress in Taiwan, Terr. Atm. Oceanic Sci. 26, 261-268, DOI: 10.3319/TAO.2014.12. 04.01(T).
  • Tenzer, R., M. Eshagh, and S. Jin (2015), Martian sub-crustal stress from gravity and topographic models, Earth Planet. Sci. Lett. 425, 84-92, DOI: 10.1016/j.epsl.2015.05.049.
  • Tikhonov, A.N. (1963), Solution of incorrectly formulated problems and regularization method, Soviet Math. Dokl. 5, 1035-1038.
  • Tondi, R., R. Schivardi, I. Molinari, and A. Morelli (2012), Upper mantle structure below the European continent: Constraints from surface-wave tomography and GRACE satellite gravity data, J. Geophys. Res. 117, B9, B09401, DOI:10.1029/2012JB009149.
  • von Frese, R.R.B., L.V. Potts, S.B. Wells, T.E. Leftwich, H.R. Kim, J.W. Kim, A.V. Golynsky, O. Hernandez, and L.R. Gaya-Piqué (2009), GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica, Geochem. Geophys. Geosyst. 10, 2, Q02014, DOI:10.1029/2008GC002149.
  • Wang, L., C.K. Shum, F.J. Simons, B. Tapley, and C. Dai (2012), Coseismic and postseismic deformation of the 2011 Tohoku-Oki earthquake constrained by GRACE gravimetry, Geophys. Res. Lett. 39, 7, L07301, DOI:10.1029/ 2012GL051104.
  • Wolff, M. (1969), Direct measurements of the Earth’s gravitational potential using a satellite pair, J. Geophys. Res. 74, 22, 5295-5300, DOI:10.1029/ JB074i022p05295.
  • Zhao, S. (2013), Lithosphere thickness and mantle viscosity estimated from joint inversion of GPS and GRACE-derived radial deformation and gravity rates in North America, Geophys. J. Int. 194, 3, 1455-1472, DOI: 10.1093/gji/ ggt212.
  • Zuber, M.T., D.E. Smith, M.M. Watkins, S.W. Asmar, A.S. Konopliv, F.G. Lemoine, H.J. Melosh, G.A. Neumann, R.J. Phillips, S.C. Solomon, M.A. Wieczorek, J.G. Williams, S.J. Goosens, G. Kruizinga, E. Mazarico, R.S. Park, and D.-N. Yuan (2013), Gravity field of the Moon from the gravity recovery and interior laboratory (GRAIL) mission, Science 339, 6120, 668-671, DOI: 10.1126/science.1231507.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fb4586a-046d-4702-bb14-68fb3f94794c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.