PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A high-sensitivity photonic crystal fiber (PCF) based on the surface plasmon resonance (SPR) biosensor for detection of density alteration in non-physiological cells (DANCE)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A highly sensitive photonic crystal fiber based on the surface plasmon resonance (PCF-SPR) biosensor for the detection of the density alteration in non-physiological cells (DANCE) is described. Human acute leukemia cells are determined by the discontinuous sucrose gradient centrifugation (DSGC) in which the cells are separated into several bands. The separated cells with different intracellular densities and refractive indexes (RI) ranging from 1.3342 to 1.3344 are distinguished in situ by means of the differential transmission spectrum. The biosensor shows a maximum amplitude sensitivity of 2000 nm/RIU and resolution as high as 5 × 10⁻⁵ RIU. According to the wavelength interrogation method, a maximum spectral sensitivity of 9000 nm/RIU in the sensing range between 1.33 and 1.53 is achieved, corresponding to a resolution as high as 1.11 × 10⁻⁵ 5RIU for the biosensor. The proposed PCF-SPR biosensor has promising application in biological and biochemical detection.
Słowa kluczowe
Twórcy
autor
  • Institute of Materials Processing and Intelligent Manufacturing & Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China
autor
  • Institute of Materials Processing and Intelligent Manufacturing & Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China
autor
  • School of Electronics Science, Northeast Petroleum University, Daqing 163318, China
autor
  • Institute of Microelectronics, Agency of Science, Technology and Research (A*STAR), 117685, Singapore
autor
  • Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
Bibliografia
  • [1] R.D. Harris, J.S. Wilkinson, Waveguide surface plasmon resonance sensors, Sens. Actuators. B: Chem. 29 (1995) 261–267.
  • [2] J. Homola, S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review, Sens. Actuators. B: Chem. 54 (1) (1999) 3–15.
  • [3] R.C. Jorgenson, S.S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance, Sens. Actuators. B: Chem. 12 (3) (1993) 213–220.
  • [4] R. Narayanaswamy, O.S. Wolfbeis, Optical Sensors: Industrial, Environmental, and Diagnostic Applications, Springer, New YorK, 2004.
  • [5] Singh Pranveer, SPR biosensors: historical perspectives and current challenges, Sens. Actuators. B: Chem. 229 (2016) 110–130.
  • [6] C.A. Wartchow, F. Podlaski, S. Li, K. Rowan, X. Zhang, D. Mark, K.S. Huang, Biosensor-based small molecule fragment screening with biolayer interferometry, J. Comput. Aided Mol. Des. 25 (7) (2011) 669–676.
  • [7] C. Ananthanawat, T. Vilaivan, V.P. Hoven, X. Su, Comparison of DNA, aminoethylglycyl PNA and pyrrolidinyl PNA as probes for detection of DNA hybridization using surface plasmon resonance technique, Biosens. Bioelectron. 25 (5) (2010) 1064–1069.
  • [8] O. Andreea, B. Camelia, J. Nicole, Aboul-Enein, Y. Hassan, Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis, Crit. Rev. Anal. Chem. 45 (2) (2015) 97–105.
  • [9] E. Suenaga, H. Mizuno, Kumar K.R. Penmetcha, Monitoring influenza hemagglutinin and glycan interactions using surface plasmon resonance, Biosens. Bioelectron. 32 (1) (2012) 195–201.
  • [10] F. Caruso, D.N. Furlong, V. Haring, E. Rodda, DNA binding and hybridization on gold and derivatized surfaces, Sens. Actuators. B: Chem. 41 (1997) 189–197.
  • [11] H. Dibekkaya, Y. Saylan, F.Y. lmazb, F.Y. lmazb, Ali Derazshamshira, Surface plasmon resonance sensors for real-time detection of cyclic citrullinated peptide antibodies, J. Macromol. Sci. Part A: Pure Appl. Chem. 53 (9) (2016) 585–594.
  • [12] J.N. Dash, R. Jha, Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance, IEEE Photonics Technol. Lett. 26 (11) (2014) 1092–1095.
  • [13] A.A. Rifat, G.A. Mahdiraji, D.M. Chow, Y.G. Shee, R. Ahmed, F.R. Adikan, Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core, Sensors 15 (5) (2015) 11499–11510.
  • [14] Lars Rindorf, Jesper B. Jensen, Martin Dufva, Lars Hagsholm Pedersen, Poul Erik Hiby, Ole Bang, Photonic crystal fiber long-period gratings for biochemical sensing, Virtual J. Biomed. Opt. 1 (10) (2006) 8224–8231.
  • [15] A. Ahmmed Rifat, et al., A novel photonic crystal fiber biosensor using surface plasmon resonance, Procedia Eng. 140 (2016) 1–7.
  • [16] Sarika Shukla, Navneet K. Sharma, Vivek Sajal, Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study, Sens. Actuators. B: Chem. 206 (2015) 463–470.
  • [17] H. Fu, S. Zhang, H. Chen, J. Weng, Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor, IEEE Sens. J. 15 (10) (2015) 5478–5482.
  • [18] X. Yu, Y. Zhang, S.S. Pan, P. Shum, M. Yan, Y. Leviatan, C.M. Li, A selectively coated photonic crystal fiber based surface plasmon resonance sensors, J. Opt. 12 (1) (2010) 015005–015011.
  • [19] B.B. Shuai, X. Li, Y.Z. Zhang, D.M. Liu, A multi-core holey fiber based plasmonic sensor with large detection range and high linearity, Opt. Express 20 (6) (2012) 5900–5974.
  • [20] B. Sun, M.Y. Chen, Y.K. Zhang, J.C. Yang, J.Q. Yao, H.X. Cui, Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing, Opt. Express 19 (5) (2011) 4091–4100.
  • [21] T. Guoa, F. Liua, Y. Liub, N.-K. Chenc, B.-O. Guana, J. Albertd, In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors, Biosens. Bioelectron. 55 (2014) 452–458.
  • [22] Y. Liu, J.-G. Wei, B.-B. Wu, X. Wu, F.-F. Lan, Y.-C. Zhu, Density alteration in non-physiological cells, Nat. Preced. 47 (3) (2011) 533–536.
  • [23] A. Hassani, M. Skorobogatiy, Photonic crystal fiber-based plasmonic sensors for the detection of bio-layer thickness, J. Opt. Soc. Am. B, Opt. Phys. 26 (8) (2009) 1550–1557.
  • [24] M. Erdmanis, D. Viegas, M. Hautakorpi, S. Novotny, J.L. Santos, H. Ludvigsen, Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H&HIPHEN;shaped optical fiber, Opt. Express 19 (15) (2011) 13980–13988.
  • [25] B. Gauvreau, A. Hassani, M.F. Fehri, A. Kabashin, M.A. Shoroobogatiy, Photonic bandgap fiber-based surface plasmon resonance sensors, Opt. Express 15 (18) (2007) 11413–11426.
  • [26] P.P. Zhang, J.Q. Yao, H.X. Cui, Y. Lu, A surface plasmon resonance sensor based on a multi- core photonic crystal fiber, Opt. Lett. 35 (6) (2013) 1673–1905.
  • [27] C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, H. Mu, P.K. Chu, Design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing, J. Nanophotonics 9 (2015) 930501–9305010.
  • [28] Y. Zhao, Z.-Q. Deng, J. Li, Photonic crystal fiber based surface plasmon resonance chemical sensors, Sens. Actuators B: Chem. 202 (2014) 557–567.
  • [29] P.B. Bing, J.Q. Yao, Y. Lu, Z.Y. Li, A surface-plasmon- resonance sensor based on photonic-crystal-fiber with large size microfluidic channels, Opt. Applicata XLII 3 (2012) 450–493.
  • [30] A. Verma, A. Prakash, R. Tripathi, Sensitivity improvement of graphene based surface plasmon resonance biosensors with chaclogenide prism, Opt.– Int. J. Light Electron Opt. 127 (4) (2016) 1787–1791.
  • [31] Q. Liu, S. Li, H. Chen, J. Li, Z. Fan, High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film, Appl. Phy. Exp. 8 (4) (2014) 046701–046706.
  • [32] X. Yu, S. Zhang, Y. Zhang, H.P. Ho, et al., An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis, Opt. Express 18 (17) (2010) 17950–17957.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fafa961-908e-4412-9006-ffaab96ce44f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.