PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The mechanism of roadway deformation in conditions of laminated rocks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The high stress condition of the rock mass requires a change in the approach to the design and usage of roadway support. It is necessary to take into account the mutual deformations of the "support - rock mass" system, as well as the peculiarities of the deformation mechanism of the roadway rock contour. The purpose of this paper is to analyze the mechanism of roadway deformation in conditions of laminated rocks and "deep mine". A simple approach to the analysis of stress distribution around the roadway that includes Kirsch equations is used. It is shown that the strength anisotropy determines the weakest place in the roadway contour, where destruction takes place. The deformation of the rock mass around a single roadway occurs in the form of extrusion wedges of laminated rocks in the roof and floor is also show. The results of in-situ observations over the displacement of the roof and the floor of "deep mine" roadways are analyzed. The linear correlation between roof sag and floor heave is established. It is stressed that roof sag must be prevented in order to effectively counteract the extrusion of the floor rock.
Rocznik
Strony
41--47
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • State HEI “National Mining University”, Dmytra Yavornitskogo av., 19, Dnipro, 49000, Ukraine
  • State HEI “National Mining University”, Dmytra Yavornitskogo av., 19, Dnipro, 49000, Ukraine
Bibliografia
  • 1. Brady, B., & Brown, E. T. (2004). Rock mechanics for underground mining (4th ed.). London: Kluwer Academic Publishers.
  • 2. Cao, R., Cao, P., & Lin, H. (2016). Support technology of deep roadway under high stress and its application. International Journal of Mining Science and Technology, 26(5), 787-793. http://dx.doi.org/10.1016/j.ijmst.2016.05.046.
  • 3. Chaoke, L., Jianxi, R., Bingli, G., & Yongjun, S. (2017). Support design and practice for floor heave of deeply buried roadway. IOP conference series: Earth and environmental science: Vol. 64 http://dx.doi.org/10.1088/1755-1315/64/1/012032.
  • 4. Cimbarevich, P. (1948). Mehanika gornyh porod [Rock mechanics]. Moscow: Ugletehizdat.
  • 5. Fesenko, E. (2005). Prognoz i zakonomernosti puchenija sloistyh porod pochvy gornyh vyrabotok [The forecast and laws of the heave of layered soles' rocks in mine workings]. (Thesis for the degree PhD). Dnepropetrovsk: National Mining University.
  • 6. Hucke, A., Studeny, A., Ruppel, U., & Witthaus, H. (2006). Advanced prediction methods for roadway behaviour by combining numerical simulation, physical simulation and in-situ monitoring. Proceedings of the 25th international conference on ground control in mining, 1-3 August 2006 (pp. 213-220). Morgantown, W Va: National Institute for Occupational Safety and Health.
  • 7. Hui, L., Freifei, Y., Yuguo, J., & Hongmin, Z. (2017). Support controlling on shear type floor heave deformation in coal roadway. Boletin Tecnico, 55(3), 348-355. Retrived 20 January 2018 from http://www.boletintecnico.com/index.php/bt/article/view/352.
  • 8. Khalymendyk, I. U., & Baryshnikov, A. (2012). Opredelenie zavisimosti puchenija pochvy ot vysoty svoda obrushenija porod v gornoj vyrabotke [Determination of the dependence of the floor heave on the height of the natural pressure arch in the roadway]. Journal of Kryvyi Rih National University, 30, 249-252.
  • 9. Khalymendyk, Iu., & Meshchaninov, S. (2000). Opredelenie komponent naprjazhenija massiva gornyh porod [Determination of the stress components of the strata]. Geotechnichal Mechanics, 22, 75-78.
  • 10. Litvinsky, G. (2012). Gornoe davlenie na malyh i bolshih glubinah razrabotki [Rock pressure for shallow and large depths of the excavation]. Scientific works of DonSTU, 37, 5-9.
  • 11. Ljunggren, C., Chang, Y., Janson, T., & Christiansson, R. (2003). An overview of rock stress measurement methods. International Journal of Rock Mechanics and Mining Sciences, 40(7-8), 975-989. http://dx.doi.org/10.1016/j.ijrmms.2003.07.003.
  • 12. Oldengott, M. (1981). Massnahmen zur Verringerung der Sohlenhebung [Measures for reducing the floor heave]. Essen: Verlag Glückauf GmbH.
  • 13. Olovjannyj, A. (2012). Mehanika gornyh porod. Modelirovanie razrushenij [Rock Mechanics. Destruction modeling]. Saint Petersburg: IPK KOSTA Ltd.
  • 14. Perras, M. A. (2009). Tunnelling in horizontally laminated ground: The influence of lamination thickness on anisotropic behaviour and practical observations from the Niagara Tunnel ProjectThesis for the degree MScEng. Ontario: Queen’s University Kingston.
  • 15. Prusek, S. (2010). Review of support systems and methods for prediction of gateroads deformation. New techniques and technologies in mining. Proceedings of the school of underground mining, Dnipropetrovs'k/Yalta, Ukraine, 12-18 September 2010 (pp. 25- 36). London: CRC Press/Balkema. http://dx.doi.org/10.1201/b11329-6.
  • 16. Solodyankin, A., Martovickyi, A., & Smirnov, A. (2015a). Ocenka geomehanicheskih uslovij i sostojanija protjazhennyh gornyh vyrabotok shaht PAO "DTEK Pavlogradugol" [Estimation of geomechanical terms and condition of long workings mines of "DTEK Pavlogradugol" development perspective underground mining]. Electronic Scientific Journal "Engineering Journal of Don. 2 part 2. Retrieved 20 January 2018 from http://ivdon.ru/ru/magazine/archive/n2p2y2015/2933 Accessed 20 January 2018 .
  • 17. Solodyankin, A., Martovickyi, A., & Smirnov, A. (2015b). Obosnovanie effektivnyh reshenij po podderzhaniju protjazhennyh vyrabotok na shahtah PAO "DTЕK Pavlogradugol" na osnove ocenki geomehanicheskih uslovij [Substantiation of effective solutions of supporting extended workings based on an assessment of geomechanical conditions at "DTEK Pavlogradugol" mines]. Internet-zhurnal «Naukovedenie», 7(3(28)), Retrieved 20 January 2018 from https://elibrary.ru/item.asp?id=24321529.
  • 18. Stavrakas, I. (2017). Acoustic emissions and pressure stimulated currents experimental techniques used to verify Kaiser effect during compression tests of Dionysos marble. Fracture and Structural Integrity, 11(41), 32-40. http://dx.doi.org/10.3221/IGF-ESIS. 40.03.
  • 19. Tully, D. (1987). Rock bolt reinforcement systems for coal mine roadways Thesis for the degree PhD Newcastle University. Retrieved 20 January 2018 from http://hdl.handle.net/10443/307.
  • 20. Vlasov, S., & Vlasov, V. (2015). Obosnovanie parametrov obemnogo modelirovanija massiva gornyh porod vokrug ochistnyh i podgotovitelnyh vyrabotok [Substantion of volumetric modeling of rock massif around mine working and development workings]. Journal "Mining of Mineral Deposits", 9(3), 367-374. http://dx.doi.org/10. 15407/mining09.03.367. Retrieved 31 January 2018 from http://mining.in.ua/articles/volume9_3/46.pdf.
  • 21. Zaslavskij, U. (1966). Issledovanie projavlenij gornogo davlenija v kapitalnyh vyrabotkah glubokih shaht Donbassa [Investigation of rock pressure manifestations in capital roadways of deep mines of Donbas]. Moscow: Nedra.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fad758a-c033-423b-ba64-5ba3209c23e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.