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Abstract. In this paper, we present some new sufficient conditions for oscillation of even
order nonlinear neutral difference equation of the form

A" (@n + aTn—ry + bTnsry) + Prlinoy + AnTh 0, =0, 1 >mn0 >0,

where m > 2 is an even integer, using arithmetic-geometric mean inequality. Examples are
provided to illustrate the main results.
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1. INTRODUCTION

In this paper, we are concerned with the even order mixed type neutral difference
equation of the form

A™(xp 4 0Ty + bTpyr,) + PpTy_ ., + qnx§+g2 =0, (1.1)

where n € N(ng) = {ng,no + 1,...}, and ng is a nonnegative integer, subject to
the following conditions:

(i) {pn} and {q,} are positive real sequences for all n € N(ny),
(ii) a and b are nonnegative real numbers, 71, 73,01 and o9 are nonnegative integers,
(iii) « and S are ratios of odd positive integers and m > 2 is an even integer.

Let # = max{r,01}. By a solution of the equation (1.1), we mean a real sequence
{z,} defined for all n > ny — 6, and satisfying the equation (1.1) for all n > ny.
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A nontrivial solution of the equation (1.1) is said to be oscillatory if it is neither
eventually positive nor eventually negative, and nonoscillatory otherwise.

Since the difference equations have important applications in population dynamics,
biology, probability theory, computer science and many other fields, there is a perma-
nent interest in obtaining sufficient conditions for the oscillation or nonoscillation of
solutions of various types of even order/odd order difference equations, see references
in this paper and their references.

For the oscillation of even order difference equations, see [1-3,6-8,12,13]. Regarding
the higher order mixed type neutral difference equations, Agarwal and Grace [4],
Agarwal, Bohner, Grace and O’Regan [7], and Grace [9], considered several higher
order mixed type neutral difference equations and established sufficient conditions for
the oscillation of all solutions.

In [7], Agarwal, Bohner, Grace and O’Regan considered the m!" order mixed
type neutral difference the equation (1.1) with « = = 1,p,, = p and ¢, = ¢, and
established some sufficient conditions for the oscillation of the equation (1.1). Motivated
by this observation, in this paper we investigate the oscillatory behavior of solutions
of the equation (1.1), and hence the results obtained in this paper complement and
generalize that of in [1,3-6,8,9,12,13].

In Section 2, we present some basic lemmas which will be used to prove the main
results. In Section 3, we obtain sufficient conditions for the oscillation of all solutions
of the equation (1.1) by using arithmetic-geometric mean inequality. Examples are
provided in Section 4 to illustrate the main results.

2. SOME PRELIMINARY LEMMAS

In this section, we present some lemmas, which are useful in proving the main results.
We write
Zn = Tp + aTp_7 +0Tpr,.

Lemma 2.1. Let a, b, c are positive quantities not all equal. Then
1
a®+b* 4+ c* > Sa—_l(aer+c)°‘ ifa>1,
a4+ +c* > (a+b+0)* if 0<a<l

The proof is elementary and hence it is omitted.

Lemma 2.2 ([3]). Let {u,} be a sequence of positive real numbers with {A™u,} be of
constant sign eventually and not identically zero eventually. Then there exists integer
1€{0,1,2,...,m} with m+1 odd for A™u, <0, and m +1 even for A™u,, >0 and
for N > 0 such that

ANu, >0 for j=0,1,2,3,...,1—1

and _ .
(1) ATu, >0 for j=11+1,01+2,....m—1

for allm > N.
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Lemma 2.3 ([11]). Let {u,} be a sequence of positive real numbers with A™u, <0
and not identically zero eventually. Then there exists a large integer N such that

(n— N)™—1

Z =) A" Yymoior,, for n >N,

Un
where 1 is defined as in Lemma 2.2. Further if {u,} is increasing, then

1 m—1
Uy 2> 7( 01 <2Tn_l) A" Yu,  forall n>2m"1IN. (2.1)
m—1)!

Lemma 2.4. Let m be an even positive integer, and let {x,} be a positive solution of
the equation (1.1). Then there exists an integer ny € N(ng) such that

Zn > 0,Az, >0,A™ 12, >0, and A™z, <0 for alln > n,.

Proof. Since {x,} is an eventually positive solution of the equation (1.1), there is
an integer n; € N(ng) such that z, > 0, z,_,, > 0 and x,,_,, > 0 for all n > n;.
Noting that a > 0, b > 0, we have z, > 0 for all n > ny, and

A"z = —puTy_,, — q,ﬂ:i_H72 <0, n>n.
It follows that {A™~!2,} is decreasing and eventually of one sign. We claim that
A™ 1z, > 0 for n > ni. Otherwise, if there is an integer ny > m; such that
A1z, <0 for n > ng, that is,
Al =—c¢ (e¢>0),
which implies that
ATl < —¢ for n>n,.

Summing the last inequality from ny to n — 1, we have

A2z, <A™ 22, —c(n — no).
Letting n — 0o, we obtain lim, _ o, A™ 2z, = —oo, which implies that {z,} is
eventually negative by Lemma 2.2. This contradiction shows that A™ 1z, > 0 for all
n > ni. Again from Lemma 2.2 and noting that m is even, we have Az, > 0
for all n > mny. This completes the proof. O

3. OSCILLATION RESULTS

In this section, we obtain some sufficient conditions for all the solutions of the equation
(1.1) to be oscillatory. From the form of the equation (1.1) the assumption of existence
of a positive solution leads to contradiction since the proof for the opposite case is
similar.
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For our convenience, we introduce the following notations:
P, = min{pnfnypn7pn+72}a
Qn = min{gn—r,,qn, Gt}

and
Rn = KIPn + K2Qn7

where K7 and K> are some positive constants.

Theorem 3.1. Assume that o < 1 < . If the first order difference inequality

A by .
Awn + (]. + d1n+ dg) (m — ]_)l (n o 01) 1wn+7'1—01 < 07 (31)
where 0 N ]
-1 1—a
An — *772P771 n ’ _ 7 _ 7
TNy Ty (35_1> m 7o N2 a

a®ifa <1, b ifb <1,
d1: . and d2: .
a’ ifa>1 b2 ifb>1

has no positive solution for some X € (0,1) and for all n > ng, then every solution of

the equation (1.1) is oscillatory.

Proof. Assume that {z,} is a positive solution of the equation (1.1). Then there exists
an integer n; > ng such that z,, >0, ,_», > 0 and z,,_, > 0 for all n > n;. By the
definition of z,, we have z, > 0 for all n > ny. Now from the equation (1.1), we obtain

ATz, = _pnnggl - an£+g2 <0

for all n > n;. From Lemma 2.4 we have Az, > 0 for all n > n;.
Now we discuss the different cases for a and b.
Case 1. Suppose a < 1 and b < 1. Then from the equation (1.1), we have

a“A" 2y ry + 0 P Ty a“qn_TlxiJrUrn =0, n>n, (3.2)
and
VYA 2y + 0 Pt Ty oy + baqn+T2x§+02+Tz =0, n>n. (3.3)
Now combining equations (1.1), (3.2) and (3.3), we obtain
AA™ 4 a® A e DA™ )
(@0, + 0TSy DTS )
+ Qu(p oy + 0Ty T VT ) O, 1>y
Since a <1, b <1 and 5 > «, the last inequality becomes
AA™ 2 +a® A L DA™ T )
+ Po(@y_o, +a%ay_o _ +0%0 5 40)

+Qn(x§+02+aﬁxﬂ By ) <0, n>n;.

n+o2—T71 n+o2+72
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Now using Lemma 2.1, we obtain
AAml aAml baAml P Qn B <0 >
( Zn +a Zn—m + Zntr) + Prze_ 01+35_1zn+02_ , m>ng.
(3.4)
Case 2. Suppose a > 1 and b > 1. Then from the equation (1.1), we have
APA" 2 o+ aﬁpn_n:cg_gl_r1 + aﬁqn_n;L"fﬂraz_T1 =0, n>n, (3.5)
and
bBAmZn+T2 + bﬁpn+72mgfal+7'2 + bﬁqn+7’2$£+02+¢2 = 07 n=ng. (36)
Now combining equations (1.1), (3.5) and (3.6), we obtain
AA™ zy +aPA™ L+ PATT L)
+P ( Ty — o1 +aﬁ 2 o1—T1 +b xn 0‘1—‘1—7‘2)
+ Q”( Lnto, + aﬁ TBH»Ungl + bB n+02+72) <0, n=>ng.
Since a > 1, b > 1 and 8 > «, the last inequality becomes
AA™ z +aPA™ L+ PA™T L)
+P ( Ly — 01+aamz o1—T1 ba g 01+T2)
+ Qn( n+¢72 + aﬁ 5—}-02—7’1 + b6$n+02+72) S 07 n Z ni.
Now using Lemma 2.1, we obtain
Q
A(A™™ 12n +a’Am Yo T+ b AT Zn-&-fg) + Pozy o T 3/3:L1 Zg+a2 <0, nzmn.
(3.7)
Case 3. Now suppose a < 1, and b > 1. Then from the equation (1.1), we have
a®A"zp oy + 0P Ty Tt aa%—nfo_@_ﬁ =0, n>n, (3.8)
and
bBAmZn+T2 + bﬂpn+T21.gfol+‘rQ + bﬁqn+72x5+02+72 = 07 n 2> ni. (39)

Combining equations (1.1), (3.8) and (3.9), we obtain

AA™ 4+ a®A™ L +BPATT )

+ Py(zy_ o, +azy_, Tl+bﬂ Ty i)

+ Qul@h gy + Ty, + V20 ) <0, n> g,
Since a <1, b>1 and 8 > «, the last inequality becomes

AA™ 2, +a®A™ L FVPATT )

+ Pu(zy_o, +awy 0% )

+ Qn( n+<72 + aB ; nt b x’n+172+7’2) S 07 n Z ni.

Tptoy—m1
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Now using Lemma 2.1, we obtain

_ _ - Q
Az +a® A ey FOPAT )+ Paz o+ g5 oy, S0 2
(3.10)
Case 4. Suppose a > 1, and b < 1. Then from the equation (1.1), we have
AP A"z + P S+ Pl s =0, 0>, (3.11)
and
baAmzn+T2 + bapn‘f‘TQ‘rz—Ul-‘rTg + baqn+T2x5,+c72+7—2 = 07 n > ni. (312)

Now combining equations (1.1), (3.11), (3.12) and 8 > «, we obtain

A(Am_lzn + aﬁAm_lzn,T1 + bO‘Am_lzn+72)
+ P’ﬂ(mzfal + aﬁngalfn + bax2*01+72)

+ Qn(x§+(,2 +aPzP By )<0, n>n.

n+o2—T71 n+o2+T72

In view of a > 1,b < 1 and 8 > «, the last inequality becomes

A(Am_lzn + aﬂAm_lzn,T1 + bO‘Am_lszrTQ)

P, el B )

+ Qn(:UﬁJFU2 + a5x2+02_ﬁ + b5x§+02+72) <0, n>mng.
Now using Lemma 2.1, we obtain

A(Amflzn + aﬁAmflzn—ﬁ + baAmilZTH-Tz) + P"Zg—ol + %Zg-‘r(n < 07 nzn.
(3.13)

Now the inequalities (3.4), (3.7), (3.10) and (3.13) can be written as

A(Am_lzn + dlAm_lznfrl + dQAm_12n+T2) + Pnzgfol + 3%?1 ZngO'z S 07 n Z ni.
(3.14)

Since {z,} is increasing, the inequality (3.14) becomes

AN e+ di A A A A T ) F P2+ Qf 2P <0, n>n.

n—oi 3[3 1"n—o1 —
(3.15)
Let uim = Pnzy_,, and usne = 3%2—3'125_01. Using the arithmetic-geometric mean
inequality
uin + u2mn2 > (u;hu;ﬂ)m-}—m ,
m + 12
and the fact that 7, + 72 = 1, we get

Q _ _ Q 12
Pozy g + 35:11 25—01 > My " P 3/3111 Zn—oy = AnZn_o,y, N >N
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Now using (3.16) in (3.15), we obtain
AA™ o+ di A e Ao A T ) Az, <0 (3.17)
for all n > ny. Using (2.1) in (3.17), we obtain

A(Anb—lzn + dlAm_lznffrl 4 dQA"L_12n+7-2)

(3.18)

+ An ] (Tl - Ul)milAmilzn—zn <0

A
(m—1)!
for all n > n;. By setting A™ 'z, = v,, we see that y, > 0 and Ay, < 0, and
the inequality (3.18) becomes
A

"
for all n > ny. Now by denoting vy, + diyn—r, + doyn+r, = wy, and using the
monotonicity of y,, we get

A(yn + dlynfn + d2yn+‘r2) + An - 01)m_1yn701 S 0 (319)

wy < (1+dy +do)yp—r, forall n>ny.
Using the last inequality in the inequality (3.19), we see that {w,, } is a positive solution
of the inequality
Ap A
(1+di+dz) (m—1

Awy, + )' (n - Ul)milwn—i-ﬁ—ol <0, n=>mn,

which is a contradiction to (3.1). This completes the proof. O
Theorem 3.2. Assume that f < 1 < «. If the first order difference inequality
B, A

Aw, — o))" g o <0, 3.20
Un T dy 4 da) m D1 ) W < (3.20)
where m 8
P, a—1 1-—
Bn: My M i 7727 = 3 = P
m N2 <3a_1) n m o 2 a_p
“ifa>1 b* ifb>1
ds = @ Z,fa_ ’ and dy = Zf =
a? ifa<1 bPifb <1

has no positive solution for some X € (0,1) and for all n > ng, then every solution of
the equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 3.1, and hence the details are omitted.
O

Theorem 3.3. Assume that o <1 < 8 hold. If
> R, =0, (3.21)
n=ni

then every solution of the equation (1.1) is oscillatory.
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Proof. Assume that {x,} is a positive solution of the equation (1.1). Then proceeding
as in the proof of Theorem 3.1, we obtain (3.15). Since {z,} is positive increasing
there exists M > 0 such that z, > M for all n > n;. Therefore from the inequality
(3.15), we obtain

QnM”
Sﬂ_l S 07

A(Amflzn + (ilA’q%l,zTL_T1 + dgAmflszrm) + P, M* + n>ni,

that is,
AA™ o+ di A ey A AT )R R, <0, n> g,
Now taking summation from n; to n — 1 and letting n — oo, we get

Z R, < A1 Zn, + A1 AT an - + doA™1 Zngtry < 00,

S=nNnq
which is a contradiction to (3.21). This completes the proof. O
Theorem 3.4. Assume that 1 < a < . If the first order difference inequality
Cp A 1

A _ m—1, ani+EB8n2 <0 3.92

Ut T g v ) =i o) W 2o S0, (3.22)

where C,, = MP”1 2 = %= %, 2 g & d1 and dy are as in Theorem 3.1,
has no posztwe solution for some X\ € (0,1) and for all n > ng, then every solution

of the equation (1.1) is oscillatory.
Proof. Proceeding as in Theorem 3.1, we see that z, > 0 and Az, > 0 for all n > n;.
Now we discuss the different cases for a and b.
Suppose a < 1 and b < 1. Then from the equation (1.1), we get
a*A"zy 7 + 0 Pnr Ty g+ a“qn,nxgﬁjrﬂ =0, n>m (3.23)

and

URVANG I S T T baqn+T2xTBL+02+72 =0, n>n. (3.24)
Now combining equations (1.1), (3.23) and (3.24), we obtain

A(Am_lz +a®A™ 1, Tl—i—bO‘Am_laHTQ)

n—o1—m 0T 5 4r,)
+ Qn( Tpto, T aawrﬂwag—r b 5+02+T2) <0, n=>ng.
Since a < 1,b < 1 and 8 > «, the last inequality yields
AA™ e 4 a® A e F DA™ )
+ Pu(zy_o, +awy 0% )
+ Q”( Tpto, T Ty, + bﬁx£+az+72) <0, n=n.

n+02 T1
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Now, using Lemma 2.1, we obtain

Pn Qn B

A(A™ izt a® ATz VAT )+ 5 o g e, S0 M2

n+oz —

The proof for the other case of a and b are similar to that of in Theorem 3.1.
Therefore for all cases of a and b, we have the inequality

m— m— m— P” @ Qn
AA™ 2+ di A 2, do A lzn+72)+3ﬂ—_12n_01 + 351 Z?L_HTQ <0, n>n.
(3.25)
Since {z,} is increasing, the inequality (3.25) becomes
m— m— m— P’ﬂ fe% Qn
A(A 1zn—‘rd1A 1zn_7—1+d2A 1Zn+72>+ﬁzn*01+3ﬁ712”5701 <0, n>ng.
(3.26)

Let uymy = ;—Elzz‘_dl and ugny = 3%9111 zﬁ_n .- Using the arithmetic-geometric mean

inequality, and the fact n; + 12 = 1, we get

Pn 4 Qn n My " a a
3ﬁ_1 Z’I’L*G‘l + 35_1 25701 2 ]gﬁi_zlp’gl Q:]Lzznzlo'tﬂnz = annzlo—tﬂn2n (3.27)
Now using (3.27) in (3.26), we obtain
AA™  zy + diA™ A A T )+ G2t < (3.28)

for all n > ny. From (2.1) and (3.28), we obtain

A(Amflzn + dlAmflzn_q.1 + dQAm712n+72)

(3.29)

+C, m_lAm_lng;:ﬁ% <0

")
for all n > ny. By setting A™ 1z, = y,,, we see that y, > 0 and Ay, < 0, and the
inequality (3.29) becomes

n—oy)"lyd i <0 (3.30)

yn—al

A(yn + dryn—r, + doynir,) + Cnm(
for all n > ny. Now by denoting vy, + diyn—r, + doyn+r, = wy, and using the
monotonicity of y,, we get

wy, < (1+dy +do)ypn—r, forall n>n,.

From the last inequality and (3.30), we see that {w,} is a positive solution of the
inequality

Cy A -1, an+pn
m 1 2 <
(1+dy +dz) (m—1)! ) =0,

n+71—o1

Aw,, +

(n—o1 w n>ny,

which is a contradiction to (3.22). This completes the proof. O
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Theorem 3.5. Assume that 1 < 8 < «. If the first order difference inequality

D
Aw n n— o)™ Lt tAnz < 3.31
" AT ds v dgm ooV Wi <0 (3:31)
0 Mg 2 B—1 o .
where D,, = 13527,2113771 meom o= =, and ny = o ds and dy are as in

Theorem 3.2, has no positive solution for some \ € (O, 1) and for all n > ng, then
every solution of the equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 3.4, and hence the details are omitted.

O
Theorem 3.6. Assume that 1 < a < 8 holds. If
> R, =0, (3.32)
n=mni

then every solution of the equation (1.1) is oscillatory.

Proof. Assume that {x,} is a positive solution of the equation (1.1). Then proceeding
as in the proof of Theorem 3.4, we obtain (3.26). Since {z,} is positive increasing
there exists M > 0 such that z, > M for all n > nj. Then from the inequality (3.26),
we obtain

Pn a Qn

8
S MO+ g5t MY <0,

AA™ ey + di A e A A T ) + n>ny,

that is,
A(Amflzn + dlAmilzn—n + d2Amilzn+‘rz) + R” < O’ nzn.

Now taking summation from n; to n — 1 and letting n — oo, we get
Z Ry <A™z +diA™ Yoy o+ da AT 2 ) < 00,
S=n1
which is a contradiction to (3.32). This completes the proof. O

Theorem 3.7. Assume that o < 8 < 1. If the first order difference inequality

E A
A n n _ m—1, ani+pn2 <0 3.33
O W dy + da) (mfl)!(n o)™ w2 <0, (3.33)
where En =ny "0y P PIQE, m = a; Ny = , di and do are as in Theorem 3.1,

has no positive solution for some \ € ( , 1) and fm“ all n > ng, then every solution of
equation (1.1) is oscillatory.
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Proof. Let {x,} be a positive solution of the equation (1.1). Then proceeding as in
Theorem 3.1, we have z, > 0 and Az, > 0 for all n > n;. Now we discuss the different
cases for a and b.

From the equation (1.1), we get

a“A" 2y r + 0 Py o+ ao‘qn_Tlxg+02_Tl =0, n>n, (3.34)
and
VA" 2y + 0 Py Ty T baqn+T2xi+02+72 =0, n>n. (3.35)
Now combining equations (1.1), (3.34) and (3.35), we obtain
AA™ 4 a® A e DA™ )
+ Pu(zy o, +awy o 0% )
FQual , Fatal bl <0, n>ng.
Since a < 1,b <1 and a < 8 < 1, the last inequality becomes
AA™ 4+ a® A e A )
+ Po(2 g, +aa$% o1—m TOMT5 g 4r)
+Qu(ahyy, +alal o AVl ) <0, n>n.
Now, using Lemma 2.1, we obtain
A(A™ Lz a® A ey DA )+ Pzl Quly,, <0, n> .

The proof for the other case of a and b are similar to that of Theorem 3.1. Therefore
for all cases of a and b, we have the inequality

A(Am_lzn + dlAm_lzn,T1 + dgAm_lzn+T2) + Ppzy_ o, + an,€+a2 <0, n>n.
(3.36)
Since {z,} is increasing, the inequality (3.36) becomes

AA™ ey + di A g A A T ) + Puzy . + an5701 <0, n>n.
(3.37)
B

Now set uim = Ppzy_,,, uaf2 = anff_gl, m = 5—o and 9y = }_g Then by the
arithmetic-geometric mean inequality

W Uz (WP ) T
m+n2
implies that
Puzpl gy + Quag gy 207 "y PP QUEN TS = B2l iz (3.38)

nna‘l n—oi

Combining (3.37) and (3.38), we obtain

AA™ oy + diA™ o + de A T )+ Bz <,
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From the last inequality by taking A™ 'z, = y,, we see that y, > 0 and
Ay, <0, and
A(yn + d1Yn— n+ d2yn+7'2) + Enzoém+ﬁn2 <0. (339)

Now let y,, + d1Yn—r, + d2Yn+r, = wy. Then w,, > 0 and using Ay, <0, we get
n < (14+dy +do)yn—r, forall n>mn;. (3.40)

Combining (3.39) and (3.40), we see that {w,} is a positive solution of the inequality

An — o)™t
Aw, + E,, ani+pBn2 <0, >
Un ot e e T DL+ dy + dg) T t=r

which is a contradiction to (3.33). This completes the proof of the theorem. O
Theorem 3.8. Assume that 8 < a < 1. If the first order difference inequality

E, A
(1+ds+dq) (m—1)!
where m = g Mo = %’ ds and dy are as in Theorem 3.2, and E, is as defined in

Theorem 3. 7 has no positive solution, then every solution of the equation (1.1) is
oscillatory.

(n _ o,l)m—lwa”h-‘rﬂﬁz <0, (341)

n+711—01 —

Aw,, +

Proof. The proof is similar to Theorem 3.7 and hence it is omitted. O

Theorem 3.9. Assume that o < 8 < 1 holds. If
> Ry,=o0 (3.42)
n=ni;

holds, then every solution of the equation (1.1) is oscillatory.

Proof. Let {x,} be a positive solution of the equation (1.1). Then proceeding as in the
proof of Theorem 3.7, we deduce the inequality (3.37). Since {z, } is positive increasing
there exists M > 0 such that z, > M for all n > ny. Then from the inequality (3.37),
we obtain

A(Amflzn + cilA’q%l,zTL,T1 + dgAmflznij) + P, M +Q.M? <0, n>n,
that is,
AA™ ey dy A e A A 2 )+ Ry <0, >y,

Now taking summation from n; to n — 1 and letting n — oo, we get

Z Ry < A™™ 1zn1 + di A™T an —r F AT zn1+72 < o0,

sS=n1

which is a contradiction to (3.42). This completes the proof. O



Oscillation criteria for even order neutral difference equations 103

Corollary 3.10. Assume that o <1 < 8 and o1 > 7 hold. If

lim inf Z Ag(s — o)™ > 3

n—oo

S (1+dy +dg)(m—1)! o1 — 71 o1—T14+1
o1 —11+1 )

s=n—(o1—71)
(3.43)
then every solution of the equation (1.1) is oscillatory.

Proof. By Theorem 7.5.1 of [10], the condition (3.43) guarantees that the first order
difference inequality (3.1) has no positive solution. Now the result follows from
Theorem 3.1. O

Corollary 3.11. Assume that § <1 < « and o1 > 71 hold. If

— —1)! _ o1—711+1
lim inf Z Bs(s—al)m*1>(1+d3+d4)(m 1)( o1 — 71 ) 7

n—o0o A o1 —T1 + 1
n—(oc1—71)

(3.44)
then every solution of the equation (1.1) is oscillatory.

Proof. By Theorem 7.5.1 of [10], the condition (3.44) guarantees that the first order
difference inequality (3.20) has no positive solution. Now the result follows from
Theorem 3.2. O

Note that for 8 > a >1,n = g—j and 7y = g%(f, imply ang + fne > 1. Now using
Theorem 3.4, we have the following corollary.

Corollary 3.12. Assume that 1 < a < 8 and o1 > 71 hold. If there exists a p > 0
such that p > <71+ In(amy + Bn2), and

T1

liminf Cp,(n — o1)™ ' exp(—e™) > 0, (3.45)

n—oo

then every solution of the equation (1.1) is oscillatory.

Proof. By Theorem 2 of [14], condition (3.45) guarantees that the first order difference
inequality (3.22) has no positive solution. Now the result follows from Theorem 3.4. [

Corollary 3.13. Assume that 1 < f < a and o1 > 11 hold. If there exists a p > 0
such that p > ——In(an; + fB1n2), and

01—T1

lim inf D,(n — o)™ 'exp(—e™) > 0, (3.46)

n—oo

then every solution of the equation (1.1) is oscillatory.

Proof. By Theorem 2 of [14], condition (3.46) guarantees that the first order difference
inequality (3.31) has no positive solution. Now the result follows from Theorem 3.5. [

Note that for a < g < 1, m = B=a and N = 128 e have ang + B < 1.

11—« 11—’
Now using Theorem 3.7, we have the following corollary.
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Corollary 3.14. Assume that o < 8 < 1 hold. If

nhHH;O inf Z Ey(s—01)™ ! =00, (3.47)
n=nogo
then every solution of the equation (1.1) is oscillatory.
Proof. By Theorem 1 of [14], condition (3.47) guarantees that the first order difference

inequality (3.33) has no positive solution. Now the result follows from Theorem 3.7. [

Note that for § < a < 1, m; = ‘ff*g and 7o = }:—g,
Now using Theorem 3.8, we have the following Corollary.

Corollary 3.15. Assume that 5 < a < 1 hold. If

we have ans + B2 < 1.

: : o m—1 _
nhﬂn;Q inf Z Es(s—o01) 00, (3.48)
n=no
then every solution of the equation (1.1) is oscillatory.

Proof. By Theorem 1 of [14], the condition (3.48) guarantees that the first order
difference inequality (3.41) has no positive solution. Now the result follows from
Theorem 3.8. O

Theorem 3.16. Assume that conditions o < 1 < 8 and o1 < 71 hold. Further assume
that there exists real valued function H : Ng x Ng — R such that

Hy,,=0 for n>ng>0,
H,s>0 for n>s>no,
AsH, s <0 for n>s>ng,

where
AQI{n,s = IIn s+1 — Hn,s~

If
1

n—1
nll)ngc SUp - Z AsH, s =00, n>ny>ng, (3.49)

n,ni s=n1
then every solution of (1.1) is oscillatory.

Proof. Assume that {x,} is a positive solution of the equation (1.1). Then there exists
an integer ny > ng such that x, > 0, x,—», > 0 and z,,—, > 0 for all n > ny. Then
by Lemma 2.4, we have Az, > 0 for all n > ny; > ng. Now define a function

Am—lzn

ZTL—Tl

Wn,

for all n > n;. Then w,, > 0 for all n > n;, and

Aw, — A"z, A"l A A"z,
Wy = - Zn—mry S } n Z ny.
Zn—11 Zn—11Rfn+1—71 Zn—11
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Similarly by defining v,, and u,, for all n > ny, respectively, by

m—1
A Z’I’L—Tl

Up = ——————, N=>MNy,
Zn—‘rl
and .
AT Zn+41o
UTL - n Z n17
an‘f'l

we obtain v,, > 0 and u,, > 0 for all n > nq, and

A"z,
Av,, < #’

Zn—'rl

and Am
z
Au, < Pnﬂ

Z’I‘L*Tl

for all n > n;. Now combining these inequalities, we obtain

Aw,, + d®Av,, + VP Au,, <

. [A"z, +aPA™ 2, + P A2, 0]
n—T71
for all n > ny. Now using (3.17) and the monotonicity of z,, the last inequality

becomes
Aw,, + a®Av, + VP Au, < —A,,.

Replacing n by s and multiplying the last inequality by H,, ; and then summing
the resulting inequality from n; to n — 1, we have

n—1 n—1
Z AH, s < — Z [Aws + a’ Avg + bBAuS]Hn,S
S=n1 S=nq

Now using summation by parts we get

n—1 n—1
Z Aan,s < Hn,nl [wnl + aﬁvnl + bﬁunl] + Z [werl + aBUerl + bBUSJrl]AZHn,s
s=n1 s§=ng
< [wnl + aﬂvm + bﬂum]Hn,nl
or
1 n—1
m gzzn ASHn,S S [wm + G/B'Unl + bﬁunl].

Taking lim sup as n — oo, in the last inequality, we obtain

n—1

Z AsHp s < 00,

L g—p,y

lim sup
n—oo

which is a contradiction to (3.49). The theorem is now proved. O
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4. EXAMPLES

In this section, we provide some examples to illustrate the main results.

Example 4.1. Consider an even order neutral difference equation

1 1 1 1
A™ (xn + 595“,1 + §$n+2) +nz_ 5+ ;xiﬂ =0, n>1, (4.1)
where m > 2 is an even integer.
Herea=3,b=% n1=1,1=201=202=1,p, =n, ¢, =+, a = % and
B = 3. A simple calculation shows that P, = (n — 1), @, = %H, m = %, Ny = %,

dy = (%)1/3, dy = (%)1/3 and 4, = ﬁ% Further calculation shows that
n—1

. LoD g (oo

2 " S g

s=n—1

(n—3)mY =00

for all m > 2. Hence all conditions of Corollary 3.10 are satisfied and therefore every
solution of the equation (4.1) is oscillatory.

Example 4.2. Consider an even order neutral difference equation

1 13

A" (2, 4 21 + 3Tpy2) + nTh_o + Tl = 0, n>1. (4.2)
Herea:2,b:3,ﬁ:1,7'2:2,01:2,02:1,pn:n,qn:% a = 3 and
8= % A simple calculation shows that P, = (n — 1), @, = %H’ m = %, N2 = %,
d3 =38, dy =27 and B, = 3:%(n — 1)3/4m. Also we see that
n—1
. . 4 (S — 1)3/4 (m—1) . . 4 (n - 2)3/4 (m—1)
nh_}lréomf Z 35/4m(s—2) —nh_{r;omfﬁm(n—?)) =00

s=n—1

for all m > 2. Therefore all conditions of Corollary 3.11 are satisfied and therefore
every solution of the equation (4.2) is oscillatory.

Example 4.3. Consider an even order neutral difference equation

2m 1
A" (T, + 3Tp—1 + 3Tpp2) + —a_o + 27 (” + ) 2d,3=0, n>1 (43)
n n

where m > 2 is an even integer.
Herea=b=3, 11 =1, 70 =2, 01 =2, 03:3,pn:27”, qn:2m(%),a:3

and 8 = 5. Further P, = 3—_:;, Qn=2" (Z—ig), R, = (37:2)(161 + ko(n +3)) and

oo oo 2m
R, = ki +k +3)) = oo.
; ;nJrQ(l 2(n+3)) = o0

Therefore, by Theorem 3.6, every solution of the equation (4.3) is oscillatory. In fact
{zn} = {(—1)"} is one such oscillatory solution of equation (4.3).
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Remark 4.4.

1.

The established results are presented in a form which is essentially new and include
some of the existing results as special cases.

The existing results [4,7,9] cannot to be applied to equations (4.1), (4.2) and (4.3)
since o # 1 and 8 # 1.

The results of this paper may be extended to equation of the form

A (an(AWFI (Tn + by ry + Cnxn+n))) + ang—al +pnx5+02 =0,

when >3 i =ooory 2 a% < 00, and the details are left to the reader.
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