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Abstract. In this paper, we present some new sufficient conditions for oscillation of even
order nonlinear neutral difference equation of the form

∆m(xn + axn−τ1 + bxn+τ2 ) + pnxαn−σ1 + qnxβn+σ2 = 0, n ≥ n0 > 0,

where m ≥ 2 is an even integer, using arithmetic-geometric mean inequality. Examples are
provided to illustrate the main results.
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1. INTRODUCTION

In this paper, we are concerned with the even order mixed type neutral difference
equation of the form

∆m(xn + axn−τ1 + bxn+τ2) + pnx
α
n−σ1 + qnx

β
n+σ2 = 0, (1.1)

where n ∈ N(n0) = {n0, n0 + 1, . . .}, and n0 is a nonnegative integer, subject to
the following conditions:

(i) {pn} and {qn} are positive real sequences for all n ∈ N(n0),
(ii) a and b are nonnegative real numbers, τ1, τ2, σ1 and σ2 are nonnegative integers,
(iii) α and β are ratios of odd positive integers and m ≥ 2 is an even integer.

Let θ = max{τ1, σ1}. By a solution of the equation (1.1), we mean a real sequence
{xn} defined for all n ≥ n0 − θ, and satisfying the equation (1.1) for all n ≥ n0.
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A nontrivial solution of the equation (1.1) is said to be oscillatory if it is neither
eventually positive nor eventually negative, and nonoscillatory otherwise.

Since the difference equations have important applications in population dynamics,
biology, probability theory, computer science and many other fields, there is a perma-
nent interest in obtaining sufficient conditions for the oscillation or nonoscillation of
solutions of various types of even order/odd order difference equations, see references
in this paper and their references.

For the oscillation of even order difference equations, see [1–3,6–8,12,13]. Regarding
the higher order mixed type neutral difference equations, Agarwal and Grace [4],
Agarwal, Bohner, Grace and O’Regan [7], and Grace [9], considered several higher
order mixed type neutral difference equations and established sufficient conditions for
the oscillation of all solutions.

In [7], Agarwal, Bohner, Grace and O’Regan considered the mth order mixed
type neutral difference the equation (1.1) with α = β = 1, pn ≡ p and qn ≡ q, and
established some sufficient conditions for the oscillation of the equation (1.1). Motivated
by this observation, in this paper we investigate the oscillatory behavior of solutions
of the equation (1.1), and hence the results obtained in this paper complement and
generalize that of in [1, 3–6,8, 9, 12,13].

In Section 2, we present some basic lemmas which will be used to prove the main
results. In Section 3, we obtain sufficient conditions for the oscillation of all solutions
of the equation (1.1) by using arithmetic-geometric mean inequality. Examples are
provided in Section 4 to illustrate the main results.

2. SOME PRELIMINARY LEMMAS

In this section, we present some lemmas, which are useful in proving the main results.
We write

zn = xn + axn−τ1 + bxn+τ2 .

Lemma 2.1. Let a, b, c are positive quantities not all equal. Then

aα + bα + cα ≥ 1
3α−1 (a+ b+ c)α if α ≥ 1,

aα + bα + cα ≥ (a+ b+ c)α if 0 < α ≤ 1.

The proof is elementary and hence it is omitted.
Lemma 2.2 ([3]). Let {un} be a sequence of positive real numbers with {∆mun} be of
constant sign eventually and not identically zero eventually. Then there exists integer
l ∈ {0, 1, 2, . . . ,m} with m+ l odd for ∆mun ≤ 0, and m+ l even for ∆mun ≥ 0 and
for N > 0 such that

∆jun > 0 for j = 0, 1, 2, 3, . . . , l − 1

and
(−1)j+l∆jun > 0 for j = l, l + 1, l + 2, . . . ,m− 1

for all n ≥ N.
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Lemma 2.3 ([11]). Let {un} be a sequence of positive real numbers with ∆mun ≤ 0
and not identically zero eventually. Then there exists a large integer N such that

un ≥
(n−N)m−1

(m− 1)! ∆m−1u2m−l−1n, for n ≥ N,

where l is defined as in Lemma 2.2. Further if {un} is increasing, then

un ≥
1

(m− 1)!

( n

2m−1

)m−1
∆m−1un for all n ≥ 2m−1N. (2.1)

Lemma 2.4. Let m be an even positive integer, and let {xn} be a positive solution of
the equation (1.1). Then there exists an integer n1 ∈ N(n0) such that

zn > 0,∆zn > 0,∆m−1zn > 0, and ∆mzn ≤ 0 for all n ≥ n1.

Proof. Since {xn} is an eventually positive solution of the equation (1.1), there is
an integer n1 ∈ N(n0) such that xn > 0, xn−τ1 > 0 and xn−σ1 > 0 for all n ≥ n1.
Noting that a ≥ 0, b ≥ 0, we have zn > 0 for all n ≥ n1, and

∆mzn = −pnxαn−σ1 − qnx
β
n+σ2 ≤ 0, n ≥ n1.

It follows that {∆m−1zn} is decreasing and eventually of one sign. We claim that
∆m−1zn > 0 for n ≥ n1. Otherwise, if there is an integer n2 ≥ n1 such that
∆m−1zn2 ≤ 0 for n ≥ n2, that is,

∆m−1zn2 = −c (c > 0),

which implies that
∆m−1zn ≤ −c for n ≥ n2.

Summing the last inequality from n2 to n− 1, we have

∆m−2zn ≤ ∆m−2zn2 − c(n− n2).

Letting n → ∞, we obtain limn→∞∆m−2zn = −∞, which implies that {zn} is
eventually negative by Lemma 2.2. This contradiction shows that ∆m−1zn > 0 for all
n ≥ n1. Again from Lemma 2.2 and noting that m is even, we have ∆zn > 0
for all n ≥ n1. This completes the proof.

3. OSCILLATION RESULTS

In this section, we obtain some sufficient conditions for all the solutions of the equation
(1.1) to be oscillatory. From the form of the equation (1.1) the assumption of existence
of a positive solution leads to contradiction since the proof for the opposite case is
similar.
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For our convenience, we introduce the following notations:

Pn = min{pn−τ1 , pn, pn+τ2},
Qn = min{qn−τ1 , qn, qn+τ2},

and
Rn = K1Pn +K2Qn,

where K1 and K2 are some positive constants.
Theorem 3.1. Assume that α < 1 < β. If the first order difference inequality

∆wn + An
(1 + d1 + d2)

λ

(m− 1)! (n− σ1)m−1wn+τ1−σ1 ≤ 0, (3.1)

where
An = η−η1

1 η−η2
2 P η1

n

(
Qn

3β−1

)η2

, η1 = β − 1
β − α, η2 = 1− α

β − α,

d1 =
{
aα if a ≤ 1,
aβ if a ≥ 1

and d2 =
{
bα if b ≤ 1,
bβ if b ≥ 1

has no positive solution for some λ ∈ (0, 1) and for all n ≥ n0, then every solution of
the equation (1.1) is oscillatory.
Proof. Assume that {xn} is a positive solution of the equation (1.1). Then there exists
an integer n1 ≥ n0 such that xn > 0, xn−σ1 > 0 and xn−τ1 > 0 for all n ≥ n1. By the
definition of zn we have zn > 0 for all n ≥ n1. Now from the equation (1.1), we obtain

∆mzn = −pnxαn−σ1 − qnx
β
n+σ2 ≤ 0

for all n ≥ n1. From Lemma 2.4 we have ∆zn > 0 for all n ≥ n1.
Now we discuss the different cases for a and b.
Case 1. Suppose a ≤ 1 and b ≤ 1. Then from the equation (1.1), we have

aα∆mzn−τ1 + aαpn−τ1x
α
n−σ1−τ1 + aαqn−τ1x

β
n+σ2−τ1 = 0, n ≥ n1, (3.2)

and
bα∆mzn+τ2 + bαpn+τ2x

α
n−σ1+τ2 + bαqn+τ2x

β
n+σ2+τ2 = 0, n ≥ n1. (3.3)

Now combining equations (1.1), (3.2) and (3.3), we obtain

∆(∆m−1zn + aα∆m−1zn−τ1 + bα∆m−1zn+τ2)
+ Pn(xαn−σ1 + aαxαn−σ1−τ1 + bαxαn−σ1+τ2)
+Qn(xβn+σ2 + aαxβn+σ2−τ1 + bαxβn+σ2+τ2) ≤ 0, n ≥ n1.

Since a ≤ 1, b ≤ 1 and β > α, the last inequality becomes

∆(∆m−1zn + aα∆m−1zn−τ1 + bα∆m−1zn+τ2)
+ Pn(xαn−σ1 + aαxαn−σ1−τ1 + bαxαn−σ1+τ2)
+Qn(xβn+σ2 + aβxβn+σ2−τ1 + bβxβn+σ2+τ2) ≤ 0, n ≥ n1.
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Now using Lemma 2.1, we obtain

∆(∆m−1zn + aα∆m−1zn−τ1 + bα∆m−1zn+τ2) +Pnz
α
n−σ1 + Qn

3β−1 z
β
n+σ2 ≤ 0, n ≥ n1.

(3.4)
Case 2. Suppose a ≥ 1 and b ≥ 1. Then from the equation (1.1), we have

aβ∆mzn−τ1 + aβpn−τ1x
α
n−σ1−τ1 + aβqn−τ1x

β
n+σ2−τ1 = 0, n ≥ n1, (3.5)

and
bβ∆mzn+τ2 + bβpn+τ2x

α
n−σ1+τ2 + bβqn+τ2x

β
n+σ2+τ2 = 0, n ≥ n1. (3.6)

Now combining equations (1.1), (3.5) and (3.6), we obtain

∆(∆m−1zn + aβ∆m−1zn−τ1 + bβ∆m−1zn+τ2)
+ Pn(xαn−σ1 + aβxαn−σ1−τ1 + bβxαn−σ1+τ2)
+Qn(xβn+σ2 + aβxβn+σ2−τ1 + bβxβn+σ2+τ2) ≤ 0, n ≥ n1.

Since a ≥ 1, b ≥ 1 and β > α, the last inequality becomes

∆(∆m−1zn + aβ∆m−1zn−τ1 + bβ∆m−1zn+τ2)
+ Pn(xαn−σ1 + aαxαn−σ1−τ1 + bαxαn−σ1+τ2)
+Qn(xβn+σ2 + aβxβn+σ2−τ1 + bβxβn+σ2+τ2) ≤ 0, n ≥ n1.

Now using Lemma 2.1, we obtain

∆(∆m−1zn + aβ∆m−1zn−τ1 + bβ∆m−1zn+τ2) + Pnz
α
n−σ1 + Qn

3β−1 z
β
n+σ2 ≤ 0, n ≥ n1.

(3.7)
Case 3. Now suppose a ≤ 1, and b ≥ 1. Then from the equation (1.1), we have

aα∆mzn−τ1 + aαpn−τ1x
α
n−σ1−τ1 + aαqn−τ1x

β
n+σ2−τ1 = 0, n ≥ n1, (3.8)

and
bβ∆mzn+τ2 + bβpn+τ2x

α
n−σ1+τ2 + bβqn+τ2x

β
n+σ2+τ2 = 0, n ≥ n1. (3.9)

Combining equations (1.1), (3.8) and (3.9), we obtain

∆(∆m−1zn + aα∆m−1zn−τ1 + bβ∆m−1zn+τ2)
+ Pn(xαn−σ1 + aαxαn−σ1−τ1 + bβxαn−σ1+τ2)
+Qn(xβn+σ2 + aαxβn+σ2−τ1 + bβxβn+σ2+τ2) ≤ 0, n ≥ n1.

Since a ≤ 1, b ≥ 1 and β > α, the last inequality becomes

∆(∆m−1zn + aα∆m−1zn−τ1 + bβ∆m−1zn+τ2)
+ Pn(xαn−σ1 + aαxαn−σ1−τ1 + bαxαn−σ1+τ2)
+Qn(xβn+σ2 + aβxβn+σ2−τ1 + bβxβn+σ2+τ2) ≤ 0, n ≥ n1.
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Now using Lemma 2.1, we obtain

∆(∆m−1zn + aα∆m−1zn−τ1 + bβ∆m−1zn+τ2) + Pnz
α
n−σ1 + Qn

3β−1 z
β
n+σ2 ≤ 0, n ≥ n1.

(3.10)
Case 4. Suppose a ≥ 1, and b ≤ 1. Then from the equation (1.1), we have

aβ∆mzn−τ1 + aβpn−τ1x
α
n−σ1−τ1 + aβqn−τ1x

β
n+σ2−τ1 = 0, n ≥ n1, (3.11)

and

bα∆mzn+τ2 + bαpn+τ2x
α
n−σ1+τ2 + bαqn+τ2x

β
n+σ2+τ2 = 0, n ≥ n1. (3.12)

Now combining equations (1.1), (3.11), (3.12) and β > α, we obtain

∆(∆m−1zn + aβ∆m−1zn−τ1 + bα∆m−1zn+τ2)
+ Pn(xαn−σ1 + aβxαn−σ1−τ1 + bαxαn−σ1+τ2)
+Qn(xβn+σ2 + aβxβn+σ2−τ1 + bαxβn+σ2+τ2) ≤ 0, n ≥ n1.

In view of a ≥ 1, b ≤ 1 and β > α, the last inequality becomes

∆(∆m−1zn + aβ∆m−1zn−τ1 + bα∆m−1zn+τ2)
+ Pn(xαn−σ1 + aαxαn−σ1−τ1 + bαxαn−σ1+τ2)
+Qn(xβn+σ2 + aβxβn+σ2−τ1 + bβxβn+σ2+τ2) ≤ 0, n ≥ n1.

Now using Lemma 2.1, we obtain

∆(∆m−1zn + aβ∆m−1zn−τ1 + bα∆m−1zn+τ2) + Pnz
α
n−σ1 + Qn

3β−1 z
β
n+σ2 ≤ 0, n ≥ n1.

(3.13)
Now the inequalities (3.4), (3.7), (3.10) and (3.13) can be written as

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2) + Pnz
α
n−σ1 + Qn

3β−1 z
β
n+σ2 ≤ 0, n ≥ n1.

(3.14)
Since {zn} is increasing, the inequality (3.14) becomes

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2) + Pnz
α
n−σ1 + Qn

3β−1 z
β
n−σ1 ≤ 0, n ≥ n1.

(3.15)
Let u1η1 = Pnz

α
n−σ1 and u2η2 = Qn

3β−1 z
β
n−σ1 . Using the arithmetic-geometric mean

inequality
u1η1 + u2η2
η1 + η2

≥ (uη1
1 u

η2
2 )

1
η1+η2 ,

and the fact that η1 + η2 = 1, we get

Pnz
α
n−σ1 + Qn

3β−1 z
β
n−σ1 ≥ η

−η1
1 η−η2

2 P η1
n

(
Qn

3β−1

)η2

zn−σ1 = Anzn−σ1 , n ≥ n1.

(3.16)
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Now using (3.16) in (3.15), we obtain

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2) +Anzn−σ1 ≤ 0 (3.17)

for all n ≥ n1. Using (2.1) in (3.17), we obtain

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2)

+An
λ

(m− 1)! (n− σ1)m−1∆m−1zn−σ1 ≤ 0
(3.18)

for all n ≥ n1. By setting ∆m−1zn = yn, we see that yn > 0 and ∆yn ≤ 0, and
the inequality (3.18) becomes

∆(yn + d1yn−τ1 + d2yn+τ2) +An
λ

(m− 1)! (n− σ1)m−1yn−σ1 ≤ 0 (3.19)

for all n ≥ n1. Now by denoting yn + d1yn−τ1 + d2yn+τ2 = wn, and using the
monotonicity of yn, we get

wn ≤ (1 + d1 + d2)yn−τ1 for all n ≥ n1.

Using the last inequality in the inequality (3.19), we see that {wn} is a positive solution
of the inequality

∆wn + An
(1 + d1 + d2)

λ

(m− 1)! (n− σ1)m−1wn+τ1−σ1 ≤ 0, n ≥ n1,

which is a contradiction to (3.1). This completes the proof.

Theorem 3.2. Assume that β < 1 < α. If the first order difference inequality

∆wn + Bn
(1 + d3 + d4)

λ

(m− 1)! (n− σ1)m−1wn+τ1−σ1 ≤ 0, (3.20)

where
Bn = η−η1

1 η−η2
2

(
Pn

3α−1

)η1

Qη2
n , η1 = α− 1

α− β , η2 = 1− β
α− β ,

d3 =
{
aα if a ≥ 1,
aβ if a ≤ 1

and d4 =
{
bα if b ≥ 1,
bβ if b ≤ 1

has no positive solution for some λ ∈ (0, 1) and for all n ≥ n0, then every solution of
the equation (1.1) is oscillatory.
Proof. The proof is similar to that of Theorem 3.1, and hence the details are omitted.

Theorem 3.3. Assume that α < 1 < β hold. If
∞∑

n=n1

Rn =∞, (3.21)

then every solution of the equation (1.1) is oscillatory.
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Proof. Assume that {xn} is a positive solution of the equation (1.1). Then proceeding
as in the proof of Theorem 3.1, we obtain (3.15). Since {zn} is positive increasing
there exists M > 0 such that zn ≥ M for all n ≥ n1. Therefore from the inequality
(3.15), we obtain

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2) + PnM
α + QnM

β

3β−1 ≤ 0, n ≥ n1,

that is,

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2) +Rn ≤ 0, n ≥ n1.

Now taking summation from n1 to n− 1 and letting n→∞, we get
∞∑

s=n1

Rs ≤ ∆m−1zn1 + d1∆m−1zn1−τ1 + d2∆m−1zn1+τ2 <∞,

which is a contradiction to (3.21). This completes the proof.

Theorem 3.4. Assume that 1 < α < β. If the first order difference inequality

∆wn + Cn
(1 + d1 + d2)

λ

(m− 1)! (n− σ1)m−1wαη1+βη2
n+τ1−σ1 ≤ 0, (3.22)

where Cn = η
−η1
1 η

−η2
2

3β−1 P η1
n Qη2

n , η1 = α−1
β−1 , η2 = β−α

β−1 , d1 and d2 are as in Theorem 3.1,
has no positive solution for some λ ∈ (0, 1) and for all n ≥ n0, then every solution
of the equation (1.1) is oscillatory.
Proof. Proceeding as in Theorem 3.1, we see that zn > 0 and ∆zn > 0 for all n ≥ n1.
Now we discuss the different cases for a and b.

Suppose a ≤ 1 and b ≤ 1. Then from the equation (1.1), we get

aα∆mzn−τ1 + aαpn−τ1x
α
n−σ1−τ1 + aαqn−τ1x

β
n+σ2−τ1 = 0, n ≥ n1 (3.23)

and

bα∆mzn+τ2 + bαpn+τ2x
α
n−σ1+τ2 + bαqn+τ2x

β
n+σ2+τ2 = 0, n ≥ n1. (3.24)

Now combining equations (1.1), (3.23) and (3.24), we obtain

∆(∆m−1zn + aα∆m−1zn−τ1 + bα∆m−1zn+τ2)
+ Pn(xαn−σ1 + aαxαn−σ1−τ1 + bαxαn−σ1+τ2)
+Qn(xβn+σ2 + aαxβn+σ2−τ1 + bαxβn+σ2+τ2) ≤ 0, n ≥ n1.

Since a ≤ 1, b ≤ 1 and β > α, the last inequality yields

∆(∆m−1zn + aα∆m−1zn−τ1 + bα∆m−1zn+τ2)
+ Pn(xαn−σ1 + aαxαn−σ1−τ1 + bαxαn−σ1+τ2)
+Qn(xβn+σ2 + aβxβn+σ2−τ1 + bβxβn+σ2+τ2) ≤ 0, n ≥ n1.
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Now, using Lemma 2.1, we obtain

∆(∆m−1zn+aα∆m−1zn−τ1 +bα∆m−1zn+τ2)+ Pn
3β−1 z

α
n−σ1 + Qn

3β−1 z
β
n+σ2 ≤ 0, n ≥ n1.

The proof for the other case of a and b are similar to that of in Theorem 3.1.
Therefore for all cases of a and b, we have the inequality

∆(∆m−1zn+d1∆m−1zn−τ1 +d2∆m−1zn+τ2)+ Pn
3β−1 z

α
n−σ1 + Qn

3β−1 z
β
n+σ2 ≤ 0, n ≥ n1.

(3.25)
Since {zn} is increasing, the inequality (3.25) becomes

∆(∆m−1zn+d1∆m−1zn−τ1 +d2∆m−1zn+τ2)+ Pn
3β−1 z

α
n−σ1 + Qn

3β−1 z
β
n−σ1 ≤ 0, n ≥ n1.

(3.26)
Let u1η1 = Pn

3β−1 z
α
n−σ1 and u2η2 = Qn

3β−1 z
β
n−σ1 . Using the arithmetic-geometric mean

inequality, and the fact η1 + η2 = 1, we get

Pn
3β−1 z

α
n−σ1 + Qn

3β−1 z
β
n−σ1 ≥

η−η1
1 η−η2

2
3β−1 P η1

n Qη2
n z

αη1+βη2
n−σ1 = Cnz

αη1+βη2
n−σ1 . (3.27)

Now using (3.27) in (3.26), we obtain

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2) + Cnz
αη1+βη2
n−σ1 ≤ 0 (3.28)

for all n ≥ n1. From (2.1) and (3.28), we obtain

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2)

+ Cn
λ

(m− 1)! (n− σ1)m−1∆m−1zαη1+βη2
n−σ1 ≤ 0

(3.29)

for all n ≥ n1. By setting ∆m−1zn = yn, we see that yn > 0 and ∆yn ≤ 0, and the
inequality (3.29) becomes

∆(yn + d1yn−τ1 + d2yn+τ2) + Cn
λ

(m− 1)! (n− σ1)m−1yαη1+βη2
n−σ1 ≤ 0 (3.30)

for all n ≥ n1. Now by denoting yn + d1yn−τ1 + d2yn+τ2 = wn, and using the
monotonicity of yn, we get

wn ≤ (1 + d1 + d2)yn−τ1 for all n ≥ n1.

From the last inequality and (3.30), we see that {wn} is a positive solution of the
inequality

∆wn + Cn
(1 + d1 + d2)

λ

(m− 1)! (n− σ1)m−1wαη1+βη2
n+τ1−σ1 ≤ 0, n ≥ n1,

which is a contradiction to (3.22). This completes the proof.
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Theorem 3.5. Assume that 1 < β < α. If the first order difference inequality

∆wn + Dn

(1 + d3 + d4)(m− 1)! (n− σ1)m−1wαη1+βη2
n+τ1−σ1 ≤ 0, (3.31)

where Dn = η
−η1
1 η

−η2
2

3α−1 P η1
n Qη2

n , η1 = β−1
α−1 , and η2 = α−β

α−1 , d3 and d4 are as in
Theorem 3.2, has no positive solution for some λ ∈ (0, 1) and for all n ≥ n0, then
every solution of the equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 3.4, and hence the details are omitted.

Theorem 3.6. Assume that 1 < α < β holds. If

∞∑

n=n1

Rn =∞, (3.32)

then every solution of the equation (1.1) is oscillatory.

Proof. Assume that {xn} is a positive solution of the equation (1.1). Then proceeding
as in the proof of Theorem 3.4, we obtain (3.26). Since {zn} is positive increasing
there exists M > 0 such that zn ≥M for all n ≥ n1. Then from the inequality (3.26),
we obtain

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2) + Pn
3β−1M

α + Qn
3β−1M

β ≤ 0, n ≥ n1,

that is,

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2) +Rn ≤ 0, n ≥ n1.

Now taking summation from n1 to n− 1 and letting n→∞, we get

∞∑

s=n1

Rs ≤ ∆m−1zn1 + d1∆m−1zn1−τ1 + d2∆m−1zn1+τ2 <∞,

which is a contradiction to (3.32). This completes the proof.

Theorem 3.7. Assume that α < β < 1. If the first order difference inequality

∆wn + En
(1 + d1 + d2)

λ

(m− 1)! (n− σ1)m−1wαη1+βη2
n+τ1−σ1 ≤ 0, (3.33)

where En = η−η1
1 η−η2

2 P η1
n Qη2

n , η1 = β−α
1−α , η2 = 1−β

1−α , d1 and d2 are as in Theorem 3.1,
has no positive solution for some λ ∈ (0, 1) and for all n ≥ n0, then every solution of
equation (1.1) is oscillatory.
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Proof. Let {xn} be a positive solution of the equation (1.1). Then proceeding as in
Theorem 3.1, we have zn > 0 and ∆zn ≥ 0 for all n ≥ n1. Now we discuss the different
cases for a and b.

From the equation (1.1), we get

aα∆mzn−τ1 + aαpn−τ1x
α
n−σ1−τ1 + aαqn−τ1x

β
n+σ2−τ1 = 0, n ≥ n1, (3.34)

and

bα∆mzn+τ2 + bαpn+τ2x
α
n−σ1+τ2 + bαqn+τ2x

β
n+σ2+τ2 = 0, n ≥ n1. (3.35)

Now combining equations (1.1), (3.34) and (3.35), we obtain

∆(∆m−1zn + aα∆m−1zn−τ1 + bα∆m−1zn+τ2)
+ Pn(xαn−σ1 + aαxαn−σ1−τ1 + bαxαn−σ1+τ2)
+Qn(xβn+σ2 + aαxβn+σ2−τ1 + bαxβn+σ2+τ2) ≤ 0, n ≥ n1.

Since a ≤ 1, b ≤ 1 and α < β < 1, the last inequality becomes

∆(∆m−1zn + aα∆m−1zn−τ1 + bα∆m−1zn+τ2)
+ Pn(xαn−σ1 + aαxαn−σ1−τ1 + bαxαn−σ1+τ2)
+Qn(xβn+σ2 + aβxβn+σ2−τ1 + bβxβn+σ2+τ2) ≤ 0, n ≥ n1.

Now, using Lemma 2.1, we obtain

∆(∆m−1zn + aα∆m−1zn−τ1 + bα∆m−1zn+τ2) + Pnz
α
n−σ1 +Qnz

β
n+σ2 ≤ 0, n ≥ n1.

The proof for the other case of a and b are similar to that of Theorem 3.1. Therefore
for all cases of a and b, we have the inequality

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2) + Pnz
α
n−σ1 +Qnz

β
n+σ2 ≤ 0, n ≥ n1.

(3.36)
Since {zn} is increasing, the inequality (3.36) becomes

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2) + Pnz
α
n−σ1 +Qnz

β
n−σ1 ≤ 0, n ≥ n1.

(3.37)
Now set u1η1 = Pnz

α
n−σ1 , u2η2 = Qnz

β
n−σ1 , η1 = β−α

1−α and η2 = 1−β
1−α . Then by the

arithmetic-geometric mean inequality
u1η1 + u2η2
η1 + η2

≥ (uη1
1 u

η2
2 )

1
η1+η2

implies that

Pnz
α
n−σ1 +Qnz

β
n−σ1 ≥ η

−η1
1 η−η2

2 P η1
n Qη2

n z
αη1+βη2
n−σ1 = Enz

αη1+βη2
n−σ1 , n ≥ n1. (3.38)

Combining (3.37) and (3.38), we obtain

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2) + Enz
αη1+βη2
n−σ1 ≤ 0.
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From the last inequality by taking ∆m−1zn = yn, we see that yn > 0 and
∆yn ≤ 0, and

∆(yn + d1yn−τ1 + d2yn+τ2) + Enz
αη1+βη2
n−σ1 ≤ 0. (3.39)

Now let yn + d1yn−τ1 + d2yn+τ2 = wn. Then wn > 0 and using ∆yn ≤ 0, we get

wn ≤ (1 + d1 + d2)yn−τ1 for all n ≥ n1. (3.40)

Combining (3.39) and (3.40), we see that {wn} is a positive solution of the inequality

∆wn + En
λ(n− σ1)m−1

(m− 1)!(1 + d1 + d2)w
αη1+βη2
n−σ1+τ1 ≤ 0, n ≥ n1,

which is a contradiction to (3.33). This completes the proof of the theorem.

Theorem 3.8. Assume that β < α < 1. If the first order difference inequality

∆wn + En
(1 + d3 + d4)

λ

(m− 1)! (n− σ1)m−1wαη1+βη2
n+τ1−σ1 ≤ 0, (3.41)

where η1 = α−β
1−β , η2 = 1−α

1−β , d3 and d4 are as in Theorem 3.2, and En is as defined in
Theorem 3.7, has no positive solution, then every solution of the equation (1.1) is
oscillatory.
Proof. The proof is similar to Theorem 3.7 and hence it is omitted.

Theorem 3.9. Assume that α < β < 1 holds. If
∞∑

n=n1

Rn =∞ (3.42)

holds, then every solution of the equation (1.1) is oscillatory.
Proof. Let {xn} be a positive solution of the equation (1.1). Then proceeding as in the
proof of Theorem 3.7, we deduce the inequality (3.37). Since {zn} is positive increasing
there exists M > 0 such that zn ≥M for all n ≥ n1. Then from the inequality (3.37),
we obtain

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2) + PnM
α +QnM

β ≤ 0, n ≥ n1,

that is,

∆(∆m−1zn + d1∆m−1zn−τ1 + d2∆m−1zn+τ2) +Rn ≤ 0, n ≥ n1.

Now taking summation from n1 to n− 1 and letting n→∞, we get
∞∑

s=n1

Rs ≤ ∆m−1zn1 + d1∆m−1zn1−τ1 + d2∆m−1zn1+τ2 <∞,

which is a contradiction to (3.42). This completes the proof.
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Corollary 3.10. Assume that α < 1 < β and σ1 > τ1 hold. If

lim inf
n→∞

n−1∑

s=n−(σ1−τ1)

As(s− σ1)m−1 >
(1 + d1 + d2)(m− 1)!

λ

(
σ1 − τ1

σ1 − τ1 + 1

)σ1−τ1+1
,

(3.43)
then every solution of the equation (1.1) is oscillatory.

Proof. By Theorem 7.5.1 of [10], the condition (3.43) guarantees that the first order
difference inequality (3.1) has no positive solution. Now the result follows from
Theorem 3.1.

Corollary 3.11. Assume that β < 1 < α and σ1 > τ1 hold. If

lim inf
n→∞

n−1∑

n−(σ1−τ1)

Bs(s− σ1)m−1 >
(1 + d3 + d4)(m− 1)!

λ

(
σ1 − τ1

σ1 − τ1 + 1

)σ1−τ1+1
,

(3.44)
then every solution of the equation (1.1) is oscillatory.

Proof. By Theorem 7.5.1 of [10], the condition (3.44) guarantees that the first order
difference inequality (3.20) has no positive solution. Now the result follows from
Theorem 3.2.

Note that for β > α > 1, η1 = α−1
β−1 and η2 = β−α

β−1 , imply αη2 +βη2 > 1. Now using
Theorem 3.4, we have the following corollary.

Corollary 3.12. Assume that 1 < α < β and σ1 > τ1 hold. If there exists a µ > 0
such that µ > 1

σ1−τ1
ln(αη1 + βη2), and

lim inf
n→∞

Cn(n− σ1)m−1 exp(−eµn) > 0, (3.45)

then every solution of the equation (1.1) is oscillatory.

Proof. By Theorem 2 of [14], condition (3.45) guarantees that the first order difference
inequality (3.22) has no positive solution. Now the result follows from Theorem 3.4.

Corollary 3.13. Assume that 1 < β < α and σ1 > τ1 hold. If there exists a µ > 0
such that µ > 1

σ1−τ1
ln(αη1 + βη2), and

lim inf
n→∞

Dn(n− σ1)m−1 exp(−eµn) > 0, (3.46)

then every solution of the equation (1.1) is oscillatory.

Proof. By Theorem 2 of [14], condition (3.46) guarantees that the first order difference
inequality (3.31) has no positive solution. Now the result follows from Theorem 3.5.

Note that for α < β < 1, η1 = β−α
1−α and η2 = 1−β

1−α , we have αη2 + βη2 < 1.
Now using Theorem 3.7, we have the following corollary.
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Corollary 3.14. Assume that α < β < 1 hold. If

lim
n→∞

inf
∞∑

n=n0

Es(s− σ1)m−1 =∞, (3.47)

then every solution of the equation (1.1) is oscillatory.
Proof. By Theorem 1 of [14], condition (3.47) guarantees that the first order difference
inequality (3.33) has no positive solution. Now the result follows from Theorem 3.7.

Note that for β < α < 1, η1 = α−β
1−β and η2 = 1−α

1−β , we have αη2 + βη2 < 1.
Now using Theorem 3.8, we have the following Corollary.
Corollary 3.15. Assume that β < α < 1 hold. If

lim
n→∞

inf
∞∑

n=n0

Es(s− σ1)m−1 =∞, (3.48)

then every solution of the equation (1.1) is oscillatory.
Proof. By Theorem 1 of [14], the condition (3.48) guarantees that the first order
difference inequality (3.41) has no positive solution. Now the result follows from
Theorem 3.8.

Theorem 3.16. Assume that conditions α < 1 < β and σ1 ≤ τ1 hold. Further assume
that there exists real valued function H : N0 × N0 → R such that

Hn,n = 0 for n ≥ n0 > 0,
Hn,s > 0 for n > s ≥ n0,

∆2Hn,s ≤ 0 for n > s ≥ n0,

where

∆2Hn,s = Hn,s+1 −Hn,s.

If

lim
n→∞

sup 1
Hn,n1

n−1∑

s=n1

AsHn,s =∞, n ≥ n1 ≥ n0, (3.49)

then every solution of (1.1) is oscillatory.
Proof. Assume that {xn} is a positive solution of the equation (1.1). Then there exists
an integer n1 ≥ n0 such that xn > 0, xn−σ1 > 0 and xn−τ1 > 0 for all n ≥ n1. Then
by Lemma 2.4, we have ∆zn > 0 for all n ≥ n1 ≥ n0. Now define a function

wn = ∆m−1zn
zn−τ1

for all n ≥ n1. Then wn > 0 for all n ≥ n1, and

∆wn = ∆mzn
zn−τ1

− ∆m−1zn+1
zn−τ1zn+1−τ1

∆zn−τ1 ≤
∆mzn
zn−τ1

, n ≥ n1.
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Similarly by defining vn and un for all n ≥ n1, respectively, by

vn = ∆m−1zn−τ1

zn−τ1

, n ≥ n1,

and
un = ∆m−1zn+τ2

zn−τ1

, n ≥ n1,

we obtain vn > 0 and un > 0 for all n ≥ n1, and

∆vn ≤
∆mzn−τ1

zn−τ1

,

and
∆un ≤ ρn

∆mzn+τ2

zn−τ1

for all n ≥ n1. Now combining these inequalities, we obtain

∆wn + aβ∆vn + bβ∆un ≤
1

zn−τ1

[∆mzn + aβ∆mzn−τ1 + bβ∆mzn+τ2 ]

for all n ≥ n1. Now using (3.17) and the monotonicity of zn, the last inequality
becomes

∆wn + aβ∆vn + bβ∆un ≤ −An.
Replacing n by s and multiplying the last inequality by Hn,s and then summing

the resulting inequality from n1 to n− 1, we have
n−1∑

s=n1

AsHn,s ≤ −
n−1∑

s=n1

[∆ws + aβ∆vs + bβ∆us]Hn,s.

Now using summation by parts we get
n−1∑

s=n1

AsHn,s ≤ Hn,n1 [wn1 + aβvn1 + bβun1 ] +
n−1∑

s=n1

[ws+1 + aβvs+1 + bβus+1]∆2Hn,s

≤ [wn1 + aβvn1 + bβun1 ]Hn,n1

or
1

H(n, n1)

n−1∑

s=n1

AsHn,s ≤ [wn1 + aβvn1 + bβun1 ].

Taking lim sup as n→∞, in the last inequality, we obtain

lim
n→∞

sup 1
Hn,n1

n−1∑

s=n1

AsHn,s <∞,

which is a contradiction to (3.49). The theorem is now proved.
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4. EXAMPLES

In this section, we provide some examples to illustrate the main results.
Example 4.1. Consider an even order neutral difference equation

∆m
(
xn + 1

2xn−1 + 1
3xn+2

)
+ nx

1
3
n−2 + 1

n
x3
n+1 = 0, n ≥ 1, (4.1)

where m ≥ 2 is an even integer.
Here a = 1

2 , b = 1
3 , τ1 = 1, τ2 = 2, σ1 = 2, σ2 = 1, pn = n, qn = 1

n , α = 1
3 and

β = 3. A simple calculation shows that Pn = (n − 1), Qn = 1
n+2 , η1 = 3

4 , η2 = 1
4 ,

d1 =
( 1

2
)1/3, d2 =

( 1
3
)1/3 and An = 4

35/4
(n−1)3/4

(n+2)1/4 . Further calculation shows that

lim inf
n→∞

n−1∑

s=n−1

4
35/4

(s− 1)3/4

(s+ 2)1/4 (s− 2)(m−1) = lim inf
n→∞

4
35/4

(n− 2)3/4

(n+ 1)1/4 (n− 3)(m−1) =∞

for all m ≥ 2. Hence all conditions of Corollary 3.10 are satisfied and therefore every
solution of the equation (4.1) is oscillatory.
Example 4.2. Consider an even order neutral difference equation

∆m(xn + 2xn−1 + 3xn+2) + nx3
n−2 + 1

n
x

1/3
n+1 = 0, n ≥ 1. (4.2)

Here a = 2, b = 3, τ1 = 1, τ2 = 2, σ1 = 2, σ2 = 1, pn = n, qn = 1
n , α = 3 and

β = 1
3 . A simple calculation shows that Pn = (n − 1), Qn = 1

n+2 , η1 = 3
4 , η2 = 1

4 ,
d3 = 8, d4 = 27 and Bn = 4

35/4 (n− 1)3/4 1
(n+2)1/4 . Also we see that

lim
n→∞

inf
n−1∑

s=n−1

4
35/4

(s− 1)3/4

(s+ 2)1/4 (s−2)(m−1) = lim
n→∞

inf 4
35/4

(n− 2)3/4

(n+ 1)1/4 (n−3)(m−1) =∞

for all m ≥ 2. Therefore all conditions of Corollary 3.11 are satisfied and therefore
every solution of the equation (4.2) is oscillatory.
Example 4.3. Consider an even order neutral difference equation

∆m(xn + 3xn−1 + 3xn+2) + 2m
n
x3
n−2 + 2m

(
n+ 1
n

)
x5
n+3 = 0, n ≥ 1, (4.3)

where m ≥ 2 is an even integer.
Here a = b = 3, τ1 = 1, τ2 = 2, σ1 = 2, σ3 = 3, pn = 2n

n , qn = 2m
(
n+1
n

)
, α = 3

and β = 5. Further Pn = 2m
n+2 , Qn = 2m

(
n+3
n+2

)
, Rn = 2m

(n+2) (k1 + k2(n+ 3)) and

∞∑

n=1
Rn =

∞∑

n=1

2m
n+ 2(k1 + k2(n+ 3)) =∞.

Therefore, by Theorem 3.6, every solution of the equation (4.3) is oscillatory. In fact
{xn} = {(−1)n} is one such oscillatory solution of equation (4.3).
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Remark 4.4.

1. The established results are presented in a form which is essentially new and include
some of the existing results as special cases.

2. The existing results [4, 7, 9] cannot to be applied to equations (4.1), (4.2) and (4.3)
since α 6= 1 and β 6= 1.

3. The results of this paper may be extended to equation of the form

∆
(
an(∆m−1 (xn + bnxn−τ1 + cnxn+τ2))

)
+ qnx

α
n−σ1 + pnx

β
n+σ2 = 0,

when
∑∞
n=n0

1
an

=∞ or
∑∞
n=n0

1
an

<∞, and the details are left to the reader.
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