OSCILLATION CRITERIA FOR EVEN ORDER NEUTRAL DIFFERENCE EQUATIONS

S. Selvarangam, S.A. Rupadevi, E. Thandapani, and S. Pinelas
Communicated by Marek Galewski

Abstract

In this paper, we present some new sufficient conditions for oscillation of even order nonlinear neutral difference equation of the form $$
\Delta^{m}\left(x_{n}+a x_{n-\tau_{1}}+b x_{n+\tau_{2}}\right)+p_{n} x_{n-\sigma_{1}}^{\alpha}+q_{n} x_{n+\sigma_{2}}^{\beta}=0, \quad n \geq n_{0}>0,
$$ where $m \geq 2$ is an even integer, using arithmetic-geometric mean inequality. Examples are provided to illustrate the main results.

Keywords: even order, neutral difference equation, oscillation, asymptotic behavior, mixed type.

Mathematics Subject Classification: 39A10.

1. INTRODUCTION

In this paper, we are concerned with the even order mixed type neutral difference equation of the form

$$
\begin{equation*}
\Delta^{m}\left(x_{n}+a x_{n-\tau_{1}}+b x_{n+\tau_{2}}\right)+p_{n} x_{n-\sigma_{1}}^{\alpha}+q_{n} x_{n+\sigma_{2}}^{\beta}=0, \tag{1.1}
\end{equation*}
$$

where $n \in \mathbb{N}\left(n_{0}\right)=\left\{n_{0}, n_{0}+1, \ldots\right\}$, and n_{0} is a nonnegative integer, subject to the following conditions:
(i) $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are positive real sequences for all $n \in \mathbb{N}\left(n_{0}\right)$,
(ii) a and b are nonnegative real numbers, $\tau_{1}, \tau_{2}, \sigma_{1}$ and σ_{2} are nonnegative integers,
(iii) α and β are ratios of odd positive integers and $m \geq 2$ is an even integer.

Let $\theta=\max \left\{\tau_{1}, \sigma_{1}\right\}$. By a solution of the equation (1.1), we mean a real sequence $\left\{x_{n}\right\}$ defined for all $n \geq n_{0}-\theta$, and satisfying the equation (1.1) for all $n \geq n_{0}$.

A nontrivial solution of the equation (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative, and nonoscillatory otherwise.

Since the difference equations have important applications in population dynamics, biology, probability theory, computer science and many other fields, there is a permanent interest in obtaining sufficient conditions for the oscillation or nonoscillation of solutions of various types of even order/odd order difference equations, see references in this paper and their references.

For the oscillation of even order difference equations, see [1-3,6-8,12,13]. Regarding the higher order mixed type neutral difference equations, Agarwal and Grace [4], Agarwal, Bohner, Grace and O'Regan [7], and Grace [9], considered several higher order mixed type neutral difference equations and established sufficient conditions for the oscillation of all solutions.

In [7], Agarwal, Bohner, Grace and O'Regan considered the $m^{t h}$ order mixed type neutral difference the equation (1.1) with $\alpha=\beta=1, p_{n} \equiv p$ and $q_{n} \equiv q$, and established some sufficient conditions for the oscillation of the equation (1.1). Motivated by this observation, in this paper we investigate the oscillatory behavior of solutions of the equation (1.1), and hence the results obtained in this paper complement and generalize that of in $[1,3-6,8,9,12,13]$.

In Section 2, we present some basic lemmas which will be used to prove the main results. In Section 3, we obtain sufficient conditions for the oscillation of all solutions of the equation (1.1) by using arithmetic-geometric mean inequality. Examples are provided in Section 4 to illustrate the main results.

2. SOME PRELIMINARY LEMMAS

In this section, we present some lemmas, which are useful in proving the main results. We write

$$
z_{n}=x_{n}+a x_{n-\tau_{1}}+b x_{n+\tau_{2}} .
$$

Lemma 2.1. Let a, b, c are positive quantities not all equal. Then

$$
\begin{aligned}
& a^{\alpha}+b^{\alpha}+c^{\alpha} \geq \frac{1}{3^{\alpha-1}}(a+b+c)^{\alpha} \quad \text { if } \alpha \geq 1 \\
& a^{\alpha}+b^{\alpha}+c^{\alpha} \geq(a+b+c)^{\alpha} \quad \text { if } \quad 0<\alpha \leq 1
\end{aligned}
$$

The proof is elementary and hence it is omitted.
Lemma 2.2 ([3]). Let $\left\{u_{n}\right\}$ be a sequence of positive real numbers with $\left\{\Delta^{m} u_{n}\right\}$ be of constant sign eventually and not identically zero eventually. Then there exists integer $l \in\{0,1,2, \ldots, m\}$ with $m+l$ odd for $\Delta^{m} u_{n} \leq 0$, and $m+l$ even for $\Delta^{m} u_{n} \geq 0$ and for $N>0$ such that

$$
\Delta^{j} u_{n}>0 \quad \text { for } \quad j=0,1,2,3, \ldots, l-1
$$

and

$$
(-1)^{j+l} \Delta^{j} u_{n}>0 \quad \text { for } \quad j=l, l+1, l+2, \ldots, m-1
$$

for all $n \geq N$.

Lemma 2.3 ([11]). Let $\left\{u_{n}\right\}$ be a sequence of positive real numbers with $\Delta^{m} u_{n} \leq 0$ and not identically zero eventually. Then there exists a large integer N such that

$$
u_{n} \geq \frac{(n-N)^{m-1}}{(m-1)!} \Delta^{m-1} u_{2^{m-l-1}}, \quad \text { for } \quad n \geq N
$$

where l is defined as in Lemma 2.2. Further if $\left\{u_{n}\right\}$ is increasing, then

$$
\begin{equation*}
u_{n} \geq \frac{1}{(m-1)!}\left(\frac{n}{2^{m-1}}\right)^{m-1} \Delta^{m-1} u_{n} \quad \text { for all } \quad n \geq 2^{m-1} N \tag{2.1}
\end{equation*}
$$

Lemma 2.4. Let m be an even positive integer, and let $\left\{x_{n}\right\}$ be a positive solution of the equation (1.1). Then there exists an integer $n_{1} \in \mathbb{N}\left(n_{0}\right)$ such that

$$
z_{n}>0, \Delta z_{n}>0, \Delta^{m-1} z_{n}>0, \text { and } \Delta^{m} z_{n} \leq 0 \text { for all } n \geq n_{1}
$$

Proof. Since $\left\{x_{n}\right\}$ is an eventually positive solution of the equation (1.1), there is an integer $n_{1} \in \mathbb{N}\left(n_{0}\right)$ such that $x_{n}>0, x_{n-\tau_{1}}>0$ and $x_{n-\sigma_{1}}>0$ for all $n \geq n_{1}$. Noting that $a \geq 0, b \geq 0$, we have $z_{n}>0$ for all $n \geq n_{1}$, and

$$
\Delta^{m} z_{n}=-p_{n} x_{n-\sigma_{1}}^{\alpha}-q_{n} x_{n+\sigma_{2}}^{\beta} \leq 0, \quad n \geq n_{1}
$$

It follows that $\left\{\Delta^{m-1} z_{n}\right\}$ is decreasing and eventually of one sign. We claim that $\Delta^{m-1} z_{n}>0$ for $n \geq n_{1}$. Otherwise, if there is an integer $n_{2} \geq n_{1}$ such that $\Delta^{m-1} z_{n_{2}} \leq 0$ for $n \geq n_{2}$, that is,

$$
\Delta^{m-1} z_{n_{2}}=-c \quad(c>0)
$$

which implies that

$$
\Delta^{m-1} z_{n} \leq-c \quad \text { for } \quad n \geq n_{2} .
$$

Summing the last inequality from n_{2} to $n-1$, we have

$$
\Delta^{m-2} z_{n} \leq \Delta^{m-2} z_{n_{2}}-c\left(n-n_{2}\right)
$$

Letting $n \rightarrow \infty$, we obtain $\lim _{n \rightarrow \infty} \Delta^{m-2} z_{n}=-\infty$, which implies that $\left\{z_{n}\right\}$ is eventually negative by Lemma 2.2. This contradiction shows that $\Delta^{m-1} z_{n}>0$ for all $n \geq n_{1}$. Again from Lemma 2.2 and noting that m is even, we have $\Delta z_{n}>0$ for all $n \geq n_{1}$. This completes the proof.

3. OSCILLATION RESULTS

In this section, we obtain some sufficient conditions for all the solutions of the equation (1.1) to be oscillatory. From the form of the equation (1.1) the assumption of existence of a positive solution leads to contradiction since the proof for the opposite case is similar.

For our convenience, we introduce the following notations:

$$
\begin{aligned}
P_{n} & =\min \left\{p_{n-\tau_{1}}, p_{n}, p_{n+\tau_{2}}\right\}, \\
Q_{n} & =\min \left\{q_{n-\tau_{1}}, q_{n}, q_{n+\tau_{2}}\right\},
\end{aligned}
$$

and

$$
R_{n}=K_{1} P_{n}+K_{2} Q_{n}
$$

where K_{1} and K_{2} are some positive constants.
Theorem 3.1. Assume that $\alpha<1<\beta$. If the first order difference inequality

$$
\begin{equation*}
\Delta w_{n}+\frac{A_{n}}{\left(1+d_{1}+d_{2}\right)} \frac{\lambda}{(m-1)!}\left(n-\sigma_{1}\right)^{m-1} w_{n+\tau_{1}-\sigma_{1}} \leq 0 \tag{3.1}
\end{equation*}
$$

where

$$
\begin{gathered}
A_{n}=\eta_{1}^{-\eta_{1}} \eta_{2}^{-\eta_{2}} P_{n}^{\eta_{1}}\left(\frac{Q_{n}}{3^{\beta-1}}\right)^{\eta_{2}}, \quad \eta_{1}=\frac{\beta-1}{\beta-\alpha}, \quad \eta_{2}=\frac{1-\alpha}{\beta-\alpha}, \\
d_{1}=\left\{\begin{array}{l}
a^{\alpha} \text { if } a \leq 1, \\
a^{\beta} \text { if } a \geq 1
\end{array} \quad \text { and } \quad d_{2}= \begin{cases}b^{\alpha} & \text { if } b \leq 1, \\
b^{\beta} & \text { if } b \geq 1\end{cases} \right.
\end{gathered}
$$

has no positive solution for some $\lambda \in(0,1)$ and for all $n \geq n_{0}$, then every solution of the equation (1.1) is oscillatory.
Proof. Assume that $\left\{x_{n}\right\}$ is a positive solution of the equation (1.1). Then there exists an integer $n_{1} \geq n_{0}$ such that $x_{n}>0, x_{n-\sigma_{1}}>0$ and $x_{n-\tau_{1}}>0$ for all $n \geq n_{1}$. By the definition of z_{n} we have $z_{n}>0$ for all $n \geq n_{1}$. Now from the equation (1.1), we obtain

$$
\Delta^{m} z_{n}=-p_{n} x_{n-\sigma_{1}}^{\alpha}-q_{n} x_{n+\sigma_{2}}^{\beta} \leq 0
$$

for all $n \geq n_{1}$. From Lemma 2.4 we have $\Delta z_{n}>0$ for all $n \geq n_{1}$.
Now we discuss the different cases for a and b.
Case 1. Suppose $a \leq 1$ and $b \leq 1$. Then from the equation (1.1), we have

$$
\begin{equation*}
a^{\alpha} \Delta^{m} z_{n-\tau_{1}}+a^{\alpha} p_{n-\tau_{1}} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+a^{\alpha} q_{n-\tau_{1}} x_{n+\sigma_{2}-\tau_{1}}^{\beta}=0, \quad n \geq n_{1} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{\alpha} \Delta^{m} z_{n+\tau_{2}}+b^{\alpha} p_{n+\tau_{2}} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}+b^{\alpha} q_{n+\tau_{2}} x_{n+\sigma_{2}+\tau_{2}}^{\beta}=0, \quad n \geq n_{1} . \tag{3.3}
\end{equation*}
$$

Now combining equations (1.1), (3.2) and (3.3), we obtain

$$
\begin{aligned}
& \Delta\left(\Delta^{m-1} z_{n}+a^{\alpha} \Delta^{m-1} z_{n-\tau_{1}}+b^{\alpha} \Delta^{m-1} z_{n+\tau_{2}}\right) \\
& +P_{n}\left(x_{n-\sigma_{1}}^{\alpha}+a^{\alpha} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+b^{\alpha} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}\right) \\
& +Q_{n}\left(x_{n+\sigma_{2}}^{\beta}+a^{\alpha} x_{n+\sigma_{2}-\tau_{1}}^{\beta}+b^{\alpha} x_{n+\sigma_{2}+\tau_{2}}^{\beta}\right) \leq 0, \quad n \geq n_{1} .
\end{aligned}
$$

Since $a \leq 1, b \leq 1$ and $\beta>\alpha$, the last inequality becomes

$$
\begin{aligned}
& \Delta\left(\Delta^{m-1} z_{n}+a^{\alpha} \Delta^{m-1} z_{n-\tau_{1}}+b^{\alpha} \Delta^{m-1} z_{n+\tau_{2}}\right) \\
& +P_{n}\left(x_{n-\sigma_{1}}^{\alpha}+a^{\alpha} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+b^{\alpha} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}\right) \\
& +Q_{n}\left(x_{n+\sigma_{2}}^{\beta}+a^{\beta} x_{n+\sigma_{2}-\tau_{1}}^{\beta}+b^{\beta} x_{n+\sigma_{2}+\tau_{2}}^{\beta}\right) \leq 0, \quad n \geq n_{1}
\end{aligned}
$$

Now using Lemma 2.1, we obtain
$\Delta\left(\Delta^{m-1} z_{n}+a^{\alpha} \Delta^{m-1} z_{n-\tau_{1}}+b^{\alpha} \Delta^{m-1} z_{n+\tau_{2}}\right)+P_{n} z_{n-\sigma_{1}}^{\alpha}+\frac{Q_{n}}{3^{\beta-1}} z_{n+\sigma_{2}}^{\beta} \leq 0, \quad n \geq n_{1}$.
Case 2. Suppose $a \geq 1$ and $b \geq 1$. Then from the equation (1.1), we have

$$
\begin{equation*}
a^{\beta} \Delta^{m} z_{n-\tau_{1}}+a^{\beta} p_{n-\tau_{1}} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+a^{\beta} q_{n-\tau_{1}} x_{n+\sigma_{2}-\tau_{1}}^{\beta}=0, \quad n \geq n_{1} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{\beta} \Delta^{m} z_{n+\tau_{2}}+b^{\beta} p_{n+\tau_{2}} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}+b^{\beta} q_{n+\tau_{2}} x_{n+\sigma_{2}+\tau_{2}}^{\beta}=0, \quad n \geq n_{1} \tag{3.6}
\end{equation*}
$$

Now combining equations (1.1), (3.5) and (3.6), we obtain

$$
\begin{aligned}
& \Delta\left(\Delta^{m-1} z_{n}+a^{\beta} \Delta^{m-1} z_{n-\tau_{1}}+b^{\beta} \Delta^{m-1} z_{n+\tau_{2}}\right) \\
& +P_{n}\left(x_{n-\sigma_{1}}^{\alpha}+a^{\beta} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+b^{\beta} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}\right) \\
& +Q_{n}\left(x_{n+\sigma_{2}}^{\beta}+a^{\beta} x_{n+\sigma_{2}-\tau_{1}}^{\beta}+b^{\beta} x_{n+\sigma_{2}+\tau_{2}}^{\beta}\right) \leq 0, \quad n \geq n_{1}
\end{aligned}
$$

Since $a \geq 1, b \geq 1$ and $\beta>\alpha$, the last inequality becomes

$$
\begin{aligned}
& \Delta\left(\Delta^{m-1} z_{n}+a^{\beta} \Delta^{m-1} z_{n-\tau_{1}}+b^{\beta} \Delta^{m-1} z_{n+\tau_{2}}\right) \\
& +P_{n}\left(x_{n-\sigma_{1}}^{\alpha}+a^{\alpha} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+b^{\alpha} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}\right) \\
& +Q_{n}\left(x_{n+\sigma_{2}}^{\beta}+a^{\beta} x_{n+\sigma_{2}-\tau_{1}}^{\beta}+b^{\beta} x_{n+\sigma_{2}+\tau_{2}}^{\beta}\right) \leq 0, \quad n \geq n_{1} .
\end{aligned}
$$

Now using Lemma 2.1, we obtain
$\Delta\left(\Delta^{m-1} z_{n}+a^{\beta} \Delta^{m-1} z_{n-\tau_{1}}+b^{\beta} \Delta^{m-1} z_{n+\tau_{2}}\right)+P_{n} z_{n-\sigma_{1}}^{\alpha}+\frac{Q_{n}}{3^{\beta-1}} z_{n+\sigma_{2}}^{\beta} \leq 0, \quad n \geq n_{1}$.
Case 3. Now suppose $a \leq 1$, and $b \geq 1$. Then from the equation (1.1), we have

$$
\begin{equation*}
a^{\alpha} \Delta^{m} z_{n-\tau_{1}}+a^{\alpha} p_{n-\tau_{1}} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+a^{\alpha} q_{n-\tau_{1}} x_{n+\sigma_{2}-\tau_{1}}^{\beta}=0, \quad n \geq n_{1} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{\beta} \Delta^{m} z_{n+\tau_{2}}+b^{\beta} p_{n+\tau_{2}} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}+b^{\beta} q_{n+\tau_{2}} x_{n+\sigma_{2}+\tau_{2}}^{\beta}=0, \quad n \geq n_{1} \tag{3.9}
\end{equation*}
$$

Combining equations (1.1), (3.8) and (3.9), we obtain

$$
\begin{aligned}
& \Delta\left(\Delta^{m-1} z_{n}+a^{\alpha} \Delta^{m-1} z_{n-\tau_{1}}+b^{\beta} \Delta^{m-1} z_{n+\tau_{2}}\right) \\
& +P_{n}\left(x_{n-\sigma_{1}}^{\alpha}+a^{\alpha} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+b^{\beta} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}\right) \\
& +Q_{n}\left(x_{n+\sigma_{2}}^{\beta}+a^{\alpha} x_{n+\sigma_{2}-\tau_{1}}^{\beta}+b^{\beta} x_{n+\sigma_{2}+\tau_{2}}^{\beta}\right) \leq 0, \quad n \geq n_{1}
\end{aligned}
$$

Since $a \leq 1, b \geq 1$ and $\beta>\alpha$, the last inequality becomes

$$
\begin{aligned}
& \Delta\left(\Delta^{m-1} z_{n}+a^{\alpha} \Delta^{m-1} z_{n-\tau_{1}}+b^{\beta} \Delta^{m-1} z_{n+\tau_{2}}\right) \\
& +P_{n}\left(x_{n-\sigma_{1}}^{\alpha}+a^{\alpha} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+b^{\alpha} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}\right) \\
& +Q_{n}\left(x_{n+\sigma_{2}}^{\beta}+a^{\beta} x_{n+\sigma_{2}-\tau_{1}}^{\beta}+b^{\beta} x_{n+\sigma_{2}+\tau_{2}}^{\beta}\right) \leq 0, \quad n \geq n_{1}
\end{aligned}
$$

Now using Lemma 2.1, we obtain
$\Delta\left(\Delta^{m-1} z_{n}+a^{\alpha} \Delta^{m-1} z_{n-\tau_{1}}+b^{\beta} \Delta^{m-1} z_{n+\tau_{2}}\right)+P_{n} z_{n-\sigma_{1}}^{\alpha}+\frac{Q_{n}}{3^{\beta-1}} z_{n+\sigma_{2}}^{\beta} \leq 0, \quad n \geq n_{1}$.
Case 4. Suppose $a \geq 1$, and $b \leq 1$. Then from the equation (1.1), we have

$$
\begin{equation*}
a^{\beta} \Delta^{m} z_{n-\tau_{1}}+a^{\beta} p_{n-\tau_{1}} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+a^{\beta} q_{n-\tau_{1}} x_{n+\sigma_{2}-\tau_{1}}^{\beta}=0, \quad n \geq n_{1} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{\alpha} \Delta^{m} z_{n+\tau_{2}}+b^{\alpha} p_{n+\tau_{2}} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}+b^{\alpha} q_{n+\tau_{2}} x_{n+\sigma_{2}+\tau_{2}}^{\beta}=0, \quad n \geq n_{1} \tag{3.12}
\end{equation*}
$$

Now combining equations (1.1), (3.11), (3.12) and $\beta>\alpha$, we obtain

$$
\begin{aligned}
& \Delta\left(\Delta^{m-1} z_{n}+a^{\beta} \Delta^{m-1} z_{n-\tau_{1}}+b^{\alpha} \Delta^{m-1} z_{n+\tau_{2}}\right) \\
& +P_{n}\left(x_{n-\sigma_{1}}^{\alpha}+a^{\beta} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+b^{\alpha} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}\right) \\
& +Q_{n}\left(x_{n+\sigma_{2}}^{\beta}+a^{\beta} x_{n+\sigma_{2}-\tau_{1}}^{\beta}+b^{\alpha} x_{n+\sigma_{2}+\tau_{2}}^{\beta}\right) \leq 0, \quad n \geq n_{1} .
\end{aligned}
$$

In view of $a \geq 1, b \leq 1$ and $\beta>\alpha$, the last inequality becomes

$$
\begin{aligned}
& \Delta\left(\Delta^{m-1} z_{n}+a^{\beta} \Delta^{m-1} z_{n-\tau_{1}}+b^{\alpha} \Delta^{m-1} z_{n+\tau_{2}}\right) \\
& +P_{n}\left(x_{n-\sigma_{1}}^{\alpha}+a^{\alpha} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+b^{\alpha} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}\right) \\
& +Q_{n}\left(x_{n+\sigma_{2}}^{\beta}+a^{\beta} x_{n+\sigma_{2}-\tau_{1}}^{\beta}+b^{\beta} x_{n+\sigma_{2}+\tau_{2}}^{\beta}\right) \leq 0, \quad n \geq n_{1}
\end{aligned}
$$

Now using Lemma 2.1, we obtain
$\Delta\left(\Delta^{m-1} z_{n}+a^{\beta} \Delta^{m-1} z_{n-\tau_{1}}+b^{\alpha} \Delta^{m-1} z_{n+\tau_{2}}\right)+P_{n} z_{n-\sigma_{1}}^{\alpha}+\frac{Q_{n}}{3^{\beta-1}} z_{n+\sigma_{2}}^{\beta} \leq 0, \quad n \geq n_{1}$.
Now the inequalities (3.4), (3.7), (3.10) and (3.13) can be written as
$\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+P_{n} z_{n-\sigma_{1}}^{\alpha}+\frac{Q_{n}}{3^{\beta-1}} z_{n+\sigma_{2}}^{\beta} \leq 0, \quad n \geq n_{1}$.
Since $\left\{z_{n}\right\}$ is increasing, the inequality (3.14) becomes
$\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+P_{n} z_{n-\sigma_{1}}^{\alpha}+\frac{Q_{n}}{3^{\beta-1}} z_{n-\sigma_{1}}^{\beta} \leq 0, \quad n \geq n_{1}$.
Let $u_{1} \eta_{1}=P_{n} z_{n-\sigma_{1}}^{\alpha}$ and $u_{2} \eta_{2}=\frac{Q_{n}}{3^{\beta-1}} z_{n-\sigma_{1}}^{\beta}$. Using the arithmetic-geometric mean inequality

$$
\frac{u_{1} \eta_{1}+u_{2} \eta_{2}}{\eta_{1}+\eta_{2}} \geq\left(u_{1}^{\eta_{1}} u_{2}^{\eta_{2}}\right)^{\frac{1}{\eta_{1}+\eta_{2}}}
$$

and the fact that $\eta_{1}+\eta_{2}=1$, we get

$$
\begin{equation*}
P_{n} z_{n-\sigma_{1}}^{\alpha}+\frac{Q_{n}}{3^{\beta-1}} z_{n-\sigma_{1}}^{\beta} \geq \eta_{1}^{-\eta_{1}} \eta_{2}^{-\eta_{2}} P_{n}^{\eta_{1}}\left(\frac{Q_{n}}{3^{\beta-1}}\right)^{\eta_{2}} z_{n-\sigma_{1}}=A_{n} z_{n-\sigma_{1}}, \quad n \geq n_{1} \tag{3.16}
\end{equation*}
$$

Now using (3.16) in (3.15), we obtain

$$
\begin{equation*}
\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+A_{n} z_{n-\sigma_{1}} \leq 0 \tag{3.17}
\end{equation*}
$$

for all $n \geq n_{1}$. Using (2.1) in (3.17), we obtain

$$
\begin{align*}
& \Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right) \\
& +A_{n} \frac{\lambda}{(m-1)!}\left(n-\sigma_{1}\right)^{m-1} \Delta^{m-1} z_{n-\sigma_{1}} \leq 0 \tag{3.18}
\end{align*}
$$

for all $n \geq n_{1}$. By setting $\Delta^{m-1} z_{n}=y_{n}$, we see that $y_{n}>0$ and $\Delta y_{n} \leq 0$, and the inequality (3.18) becomes

$$
\begin{equation*}
\Delta\left(y_{n}+d_{1} y_{n-\tau_{1}}+d_{2} y_{n+\tau_{2}}\right)+A_{n} \frac{\lambda}{(m-1)!}\left(n-\sigma_{1}\right)^{m-1} y_{n-\sigma_{1}} \leq 0 \tag{3.19}
\end{equation*}
$$

for all $n \geq n_{1}$. Now by denoting $y_{n}+d_{1} y_{n-\tau_{1}}+d_{2} y_{n+\tau_{2}}=w_{n}$, and using the monotonicity of y_{n}, we get

$$
w_{n} \leq\left(1+d_{1}+d_{2}\right) y_{n-\tau_{1}} \quad \text { for all } \quad n \geq n_{1}
$$

Using the last inequality in the inequality (3.19), we see that $\left\{w_{n}\right\}$ is a positive solution of the inequality

$$
\Delta w_{n}+\frac{A_{n}}{\left(1+d_{1}+d_{2}\right)} \frac{\lambda}{(m-1)!}\left(n-\sigma_{1}\right)^{m-1} w_{n+\tau_{1}-\sigma_{1}} \leq 0, \quad n \geq n_{1}
$$

which is a contradiction to (3.1). This completes the proof.
Theorem 3.2. Assume that $\beta<1<\alpha$. If the first order difference inequality

$$
\begin{equation*}
\Delta w_{n}+\frac{B_{n}}{\left(1+d_{3}+d_{4}\right)} \frac{\lambda}{(m-1)!}\left(n-\sigma_{1}\right)^{m-1} w_{n+\tau_{1}-\sigma_{1}} \leq 0 \tag{3.20}
\end{equation*}
$$

where

$$
\begin{gathered}
B_{n}=\eta_{1}^{-\eta_{1}} \eta_{2}^{-\eta_{2}}\left(\frac{P_{n}}{3^{\alpha-1}}\right)^{\eta_{1}} Q_{n}^{\eta_{2}}, \quad \eta_{1}=\frac{\alpha-1}{\alpha-\beta}, \quad \eta_{2}=\frac{1-\beta}{\alpha-\beta}, \\
d_{3}=\left\{\begin{array}{l}
a^{\alpha} \text { if } a \geq 1, \\
a^{\beta} \text { if } a \leq 1
\end{array} \quad \text { and } \quad d_{4}=\left\{\begin{array}{l}
b^{\alpha} \text { if } b \geq 1, \\
b^{\beta} \text { if } b \leq 1
\end{array}\right.\right.
\end{gathered}
$$

has no positive solution for some $\lambda \in(0,1)$ and for all $n \geq n_{0}$, then every solution of the equation (1.1) is oscillatory.
Proof. The proof is similar to that of Theorem 3.1, and hence the details are omitted.

Theorem 3.3. Assume that $\alpha<1<\beta$ hold. If

$$
\begin{equation*}
\sum_{n=n_{1}}^{\infty} R_{n}=\infty \tag{3.21}
\end{equation*}
$$

then every solution of the equation (1.1) is oscillatory.

Proof. Assume that $\left\{x_{n}\right\}$ is a positive solution of the equation (1.1). Then proceeding as in the proof of Theorem 3.1, we obtain (3.15). Since $\left\{z_{n}\right\}$ is positive increasing there exists $M>0$ such that $z_{n} \geq M$ for all $n \geq n_{1}$. Therefore from the inequality (3.15), we obtain

$$
\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+P_{n} M^{\alpha}+\frac{Q_{n} M^{\beta}}{3^{\beta-1}} \leq 0, \quad n \geq n_{1}
$$

that is,

$$
\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+R_{n} \leq 0, \quad n \geq n_{1}
$$

Now taking summation from n_{1} to $n-1$ and letting $n \rightarrow \infty$, we get

$$
\sum_{s=n_{1}}^{\infty} R_{s} \leq \Delta^{m-1} z_{n_{1}}+d_{1} \Delta^{m-1} z_{n_{1}-\tau_{1}}+d_{2} \Delta^{m-1} z_{n_{1}+\tau_{2}}<\infty
$$

which is a contradiction to (3.21). This completes the proof.
Theorem 3.4. Assume that $1<\alpha<\beta$. If the first order difference inequality

$$
\begin{equation*}
\Delta w_{n}+\frac{C_{n}}{\left(1+d_{1}+d_{2}\right)} \frac{\lambda}{(m-1)!}\left(n-\sigma_{1}\right)^{m-1} w_{n+\tau_{1}-\sigma_{1}}^{\alpha \eta_{1}+\beta \eta_{2}} \leq 0 \tag{3.22}
\end{equation*}
$$

where $C_{n}=\frac{\eta_{1}^{-\eta_{1}} \eta_{2}^{-\eta_{2}}}{3^{\beta-1}} P_{n}^{\eta_{1}} Q_{n}^{\eta_{2}}, \eta_{1}=\frac{\alpha-1}{\beta-1}, \eta_{2}=\frac{\beta-\alpha}{\beta-1}, d_{1}$ and d_{2} are as in Theorem 3.1, has no positive solution for some $\lambda \in(0,1)$ and for all $n \geq n_{0}$, then every solution of the equation (1.1) is oscillatory.

Proof. Proceeding as in Theorem 3.1, we see that $z_{n}>0$ and $\Delta z_{n}>0$ for all $n \geq n_{1}$. Now we discuss the different cases for a and b.

Suppose $a \leq 1$ and $b \leq 1$. Then from the equation (1.1), we get

$$
\begin{equation*}
a^{\alpha} \Delta^{m} z_{n-\tau_{1}}+a^{\alpha} p_{n-\tau_{1}} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+a^{\alpha} q_{n-\tau_{1}} x_{n+\sigma_{2}-\tau_{1}}^{\beta}=0, \quad n \geq n_{1} \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{\alpha} \Delta^{m} z_{n+\tau_{2}}+b^{\alpha} p_{n+\tau_{2}} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}+b^{\alpha} q_{n+\tau_{2}} x_{n+\sigma_{2}+\tau_{2}}^{\beta}=0, \quad n \geq n_{1} \tag{3.24}
\end{equation*}
$$

Now combining equations (1.1), (3.23) and (3.24), we obtain

$$
\begin{aligned}
& \Delta\left(\Delta^{m-1} z_{n}+a^{\alpha} \Delta^{m-1} z_{n-\tau_{1}}+b^{\alpha} \Delta^{m-1} z_{n+\tau_{2}}\right) \\
& +P_{n}\left(x_{n-\sigma_{1}}^{\alpha}+a^{\alpha} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+b^{\alpha} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}\right) \\
& +Q_{n}\left(x_{n+\sigma_{2}}^{\beta}+a^{\alpha} x_{n+\sigma_{2}-\tau_{1}}^{\beta}+b^{\alpha} x_{n+\sigma_{2}+\tau_{2}}^{\beta}\right) \leq 0, \quad n \geq n_{1}
\end{aligned}
$$

Since $a \leq 1, b \leq 1$ and $\beta>\alpha$, the last inequality yields

$$
\begin{aligned}
& \Delta\left(\Delta^{m-1} z_{n}+a^{\alpha} \Delta^{m-1} z_{n-\tau_{1}}+b^{\alpha} \Delta^{m-1} z_{n+\tau_{2}}\right) \\
& +P_{n}\left(x_{n-\sigma_{1}}^{\alpha}+a^{\alpha} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+b^{\alpha} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}\right) \\
& +Q_{n}\left(x_{n+\sigma_{2}}^{\beta}+a^{\beta} x_{n+\sigma_{2}-\tau_{1}}^{\beta}+b^{\beta} x_{n+\sigma_{2}+\tau_{2}}^{\beta}\right) \leq 0, \quad n \geq n_{1}
\end{aligned}
$$

Now, using Lemma 2.1, we obtain
$\Delta\left(\Delta^{m-1} z_{n}+a^{\alpha} \Delta^{m-1} z_{n-\tau_{1}}+b^{\alpha} \Delta^{m-1} z_{n+\tau_{2}}\right)+\frac{P_{n}}{3^{\beta-1}} z_{n-\sigma_{1}}^{\alpha}+\frac{Q_{n}}{3^{\beta-1}} z_{n+\sigma_{2}}^{\beta} \leq 0, \quad n \geq n_{1}$.
The proof for the other case of a and b are similar to that of in Theorem 3.1. Therefore for all cases of a and b, we have the inequality
$\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+\frac{P_{n}}{3^{\beta-1}} z_{n-\sigma_{1}}^{\alpha}+\frac{Q_{n}}{3^{\beta-1}} z_{n+\sigma_{2}}^{\beta} \leq 0, \quad n \geq n_{1}$.
Since $\left\{z_{n}\right\}$ is increasing, the inequality (3.25) becomes
$\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+\frac{P_{n}}{3^{\beta-1}} z_{n-\sigma_{1}}^{\alpha}+\frac{Q_{n}}{3^{\beta-1}} z_{n-\sigma_{1}}^{\beta} \leq 0, \quad n \geq n_{1}$.
Let $u_{1} \eta_{1}=\frac{P_{n}}{3^{\beta-1}} z_{n-\sigma_{1}}^{\alpha}$ and $u_{2} \eta_{2}=\frac{Q_{n}}{3^{\beta-1}} z_{n-\sigma_{1}}^{\beta}$. Using the arithmetic-geometric mean inequality, and the fact $\eta_{1}+\eta_{2}=1$, we get

$$
\begin{equation*}
\frac{P_{n}}{3^{\beta-1}} z_{n-\sigma_{1}}^{\alpha}+\frac{Q_{n}}{3^{\beta-1}} z_{n-\sigma_{1}}^{\beta} \geq \frac{\eta_{1}^{-\eta_{1}} \eta_{2}^{-\eta_{2}}}{3^{\beta-1}} P_{n}^{\eta_{1}} Q_{n}^{\eta_{2}} z_{n-\sigma_{1}}^{\alpha \eta_{1}+\beta \eta_{2}}=C_{n} z_{n-\sigma_{1}}^{\alpha \eta_{1}+\beta \eta_{2}} \tag{3.27}
\end{equation*}
$$

Now using (3.27) in (3.26), we obtain

$$
\begin{equation*}
\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+C_{n} z_{n-\sigma_{1}}^{\alpha \eta_{1}+\beta \eta_{2}} \leq 0 \tag{3.28}
\end{equation*}
$$

for all $n \geq n_{1}$. From (2.1) and (3.28), we obtain

$$
\begin{align*}
& \Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right) \\
& +C_{n} \frac{\lambda}{(m-1)!}\left(n-\sigma_{1}\right)^{m-1} \Delta^{m-1} z_{n-\sigma_{1}}^{\alpha \eta_{1}+\beta \eta_{2}} \leq 0 \tag{3.29}
\end{align*}
$$

for all $n \geq n_{1}$. By setting $\Delta^{m-1} z_{n}=y_{n}$, we see that $y_{n}>0$ and $\Delta y_{n} \leq 0$, and the inequality (3.29) becomes

$$
\begin{equation*}
\Delta\left(y_{n}+d_{1} y_{n-\tau_{1}}+d_{2} y_{n+\tau_{2}}\right)+C_{n} \frac{\lambda}{(m-1)!}\left(n-\sigma_{1}\right)^{m-1} y_{n-\sigma_{1}}^{\alpha \eta_{1}+\beta \eta_{2}} \leq 0 \tag{3.30}
\end{equation*}
$$

for all $n \geq n_{1}$. Now by denoting $y_{n}+d_{1} y_{n-\tau_{1}}+d_{2} y_{n+\tau_{2}}=w_{n}$, and using the monotonicity of y_{n}, we get

$$
w_{n} \leq\left(1+d_{1}+d_{2}\right) y_{n-\tau_{1}} \quad \text { for all } \quad n \geq n_{1}
$$

From the last inequality and (3.30), we see that $\left\{w_{n}\right\}$ is a positive solution of the inequality

$$
\Delta w_{n}+\frac{C_{n}}{\left(1+d_{1}+d_{2}\right)} \frac{\lambda}{(m-1)!}\left(n-\sigma_{1}\right)^{m-1} w_{n+\tau_{1}-\sigma_{1}}^{\alpha \eta_{1}+\beta \eta_{2}} \leq 0, \quad n \geq n_{1}
$$

which is a contradiction to (3.22). This completes the proof.

Theorem 3.5. Assume that $1<\beta<\alpha$. If the first order difference inequality

$$
\begin{equation*}
\Delta w_{n}+\frac{D_{n}}{\left(1+d_{3}+d_{4}\right)(m-1)!}\left(n-\sigma_{1}\right)^{m-1} w_{n+\tau_{1}-\sigma_{1}}^{\alpha \eta_{1}+\beta \eta_{2}} \leq 0 \tag{3.31}
\end{equation*}
$$

where $D_{n}=\frac{\eta_{1}^{-\eta_{1}} \eta_{2}^{-\eta_{2}}}{3^{\alpha-1}} P_{n}^{\eta_{1}} Q_{n}^{\eta_{2}}, \eta_{1}=\frac{\beta-1}{\alpha-1}$, and $\eta_{2}=\frac{\alpha-\beta}{\alpha-1}, d_{3}$ and d_{4} are as in Theorem 3.2, has no positive solution for some $\lambda \in(0,1)$ and for all $n \geq n_{0}$, then every solution of the equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 3.4, and hence the details are omitted.

Theorem 3.6. Assume that $1<\alpha<\beta$ holds. If

$$
\begin{equation*}
\sum_{n=n_{1}}^{\infty} R_{n}=\infty \tag{3.32}
\end{equation*}
$$

then every solution of the equation (1.1) is oscillatory.
Proof. Assume that $\left\{x_{n}\right\}$ is a positive solution of the equation (1.1). Then proceeding as in the proof of Theorem 3.4, we obtain (3.26). Since $\left\{z_{n}\right\}$ is positive increasing there exists $M>0$ such that $z_{n} \geq M$ for all $n \geq n_{1}$. Then from the inequality (3.26), we obtain

$$
\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+\frac{P_{n}}{3^{\beta-1}} M^{\alpha}+\frac{Q_{n}}{3^{\beta-1}} M^{\beta} \leq 0, \quad n \geq n_{1}
$$

that is,

$$
\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+R_{n} \leq 0, \quad n \geq n_{1} .
$$

Now taking summation from n_{1} to $n-1$ and letting $n \rightarrow \infty$, we get

$$
\sum_{s=n_{1}}^{\infty} R_{s} \leq \Delta^{m-1} z_{n_{1}}+d_{1} \Delta^{m-1} z_{n_{1}-\tau_{1}}+d_{2} \Delta^{m-1} z_{n_{1}+\tau_{2}}<\infty
$$

which is a contradiction to (3.32). This completes the proof.
Theorem 3.7. Assume that $\alpha<\beta<1$. If the first order difference inequality

$$
\begin{equation*}
\Delta w_{n}+\frac{E_{n}}{\left(1+d_{1}+d_{2}\right)} \frac{\lambda}{(m-1)!}\left(n-\sigma_{1}\right)^{m-1} w_{n+\tau_{1}-\sigma_{1}}^{\alpha \eta_{1}+\beta \eta_{2}} \leq 0 \tag{3.33}
\end{equation*}
$$

where $E_{n}=\eta_{1}^{-\eta_{1}} \eta_{2}^{-\eta_{2}} P_{n}^{\eta_{1}} Q_{n}^{\eta_{2}}, \eta_{1}=\frac{\beta-\alpha}{1-\alpha}, \eta_{2}=\frac{1-\beta}{1-\alpha}, d_{1}$ and d_{2} are as in Theorem 3.1, has no positive solution for some $\lambda \in(0,1)$ and for all $n \geq n_{0}$, then every solution of equation (1.1) is oscillatory.

Proof. Let $\left\{x_{n}\right\}$ be a positive solution of the equation (1.1). Then proceeding as in Theorem 3.1, we have $z_{n}>0$ and $\Delta z_{n} \geq 0$ for all $n \geq n_{1}$. Now we discuss the different cases for a and b.

From the equation (1.1), we get

$$
\begin{equation*}
a^{\alpha} \Delta^{m} z_{n-\tau_{1}}+a^{\alpha} p_{n-\tau_{1}} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+a^{\alpha} q_{n-\tau_{1}} x_{n+\sigma_{2}-\tau_{1}}^{\beta}=0, \quad n \geq n_{1} \tag{3.34}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{\alpha} \Delta^{m} z_{n+\tau_{2}}+b^{\alpha} p_{n+\tau_{2}} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}+b^{\alpha} q_{n+\tau_{2}} x_{n+\sigma_{2}+\tau_{2}}^{\beta}=0, \quad n \geq n_{1} \tag{3.35}
\end{equation*}
$$

Now combining equations (1.1), (3.34) and (3.35), we obtain

$$
\begin{aligned}
& \Delta\left(\Delta^{m-1} z_{n}+a^{\alpha} \Delta^{m-1} z_{n-\tau_{1}}+b^{\alpha} \Delta^{m-1} z_{n+\tau_{2}}\right) \\
& +P_{n}\left(x_{n-\sigma_{1}}^{\alpha}+a^{\alpha} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+b^{\alpha} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}\right) \\
& +Q_{n}\left(x_{n+\sigma_{2}}^{\beta}+a^{\alpha} x_{n+\sigma_{2}-\tau_{1}}^{\beta}+b^{\alpha} x_{n+\sigma_{2}+\tau_{2}}^{\beta}\right) \leq 0, \quad n \geq n_{1}
\end{aligned}
$$

Since $a \leq 1, b \leq 1$ and $\alpha<\beta<1$, the last inequality becomes

$$
\begin{aligned}
& \Delta\left(\Delta^{m-1} z_{n}+a^{\alpha} \Delta^{m-1} z_{n-\tau_{1}}+b^{\alpha} \Delta^{m-1} z_{n+\tau_{2}}\right) \\
& +P_{n}\left(x_{n-\sigma_{1}}^{\alpha}+a^{\alpha} x_{n-\sigma_{1}-\tau_{1}}^{\alpha}+b^{\alpha} x_{n-\sigma_{1}+\tau_{2}}^{\alpha}\right) \\
& +Q_{n}\left(x_{n+\sigma_{2}}^{\beta}+a^{\beta} x_{n+\sigma_{2}-\tau_{1}}^{\beta}+b^{\beta} x_{n+\sigma_{2}+\tau_{2}}^{\beta}\right) \leq 0, \quad n \geq n_{1} .
\end{aligned}
$$

Now, using Lemma 2.1, we obtain

$$
\Delta\left(\Delta^{m-1} z_{n}+a^{\alpha} \Delta^{m-1} z_{n-\tau_{1}}+b^{\alpha} \Delta^{m-1} z_{n+\tau_{2}}\right)+P_{n} z_{n-\sigma_{1}}^{\alpha}+Q_{n} z_{n+\sigma_{2}}^{\beta} \leq 0, \quad n \geq n_{1}
$$

The proof for the other case of a and b are similar to that of Theorem 3.1. Therefore for all cases of a and b, we have the inequality

$$
\begin{equation*}
\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+P_{n} z_{n-\sigma_{1}}^{\alpha}+Q_{n} z_{n+\sigma_{2}}^{\beta} \leq 0, \quad n \geq n_{1} . \tag{3.36}
\end{equation*}
$$

Since $\left\{z_{n}\right\}$ is increasing, the inequality (3.36) becomes

$$
\begin{equation*}
\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+P_{n} z_{n-\sigma_{1}}^{\alpha}+Q_{n} z_{n-\sigma_{1}}^{\beta} \leq 0, \quad n \geq n_{1} \tag{3.37}
\end{equation*}
$$

Now set $u_{1} \eta_{1}=P_{n} z_{n-\sigma_{1}}^{\alpha}, u_{2} \eta_{2}=Q_{n} z_{n-\sigma_{1}}^{\beta}, \eta_{1}=\frac{\beta-\alpha}{1-\alpha}$ and $\eta_{2}=\frac{1-\beta}{1-\alpha}$. Then by the arithmetic-geometric mean inequality

$$
\frac{u_{1} \eta_{1}+u_{2} \eta_{2}}{\eta_{1}+\eta_{2}} \geq\left(u_{1}^{\eta_{1}} u_{2}^{\eta_{2}}\right)^{\frac{1}{\eta_{1}+\eta_{2}}}
$$

implies that

$$
\begin{equation*}
P_{n} z_{n-\sigma_{1}}^{\alpha}+Q_{n} z_{n-\sigma_{1}}^{\beta} \geq \eta_{1}^{-\eta_{1}} \eta_{2}^{-\eta_{2}} P_{n}^{\eta_{1}} Q_{n}^{\eta_{2}} z_{n-\sigma_{1}}^{\alpha \eta_{1}+\beta \eta_{2}}=E_{n} z_{n-\sigma_{1}}^{\alpha \eta_{1}+\beta \eta_{2}}, \quad n \geq n_{1} \tag{3.38}
\end{equation*}
$$

Combining (3.37) and (3.38), we obtain

$$
\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+E_{n} z_{n-\sigma_{1}}^{\alpha \eta_{1}+\beta \eta_{2}} \leq 0
$$

From the last inequality by taking $\Delta^{m-1} z_{n}=y_{n}$, we see that $y_{n}>0$ and $\Delta y_{n} \leq 0$, and

$$
\begin{equation*}
\Delta\left(y_{n}+d_{1} y_{n-\tau_{1}}+d_{2} y_{n+\tau_{2}}\right)+E_{n} z_{n-\sigma_{1}}^{\alpha \eta_{1}+\beta \eta_{2}} \leq 0 \tag{3.39}
\end{equation*}
$$

Now let $y_{n}+d_{1} y_{n-\tau_{1}}+d_{2} y_{n+\tau_{2}}=w_{n}$. Then $w_{n}>0$ and using $\Delta y_{n} \leq 0$, we get

$$
\begin{equation*}
w_{n} \leq\left(1+d_{1}+d_{2}\right) y_{n-\tau_{1}} \quad \text { for all } \quad n \geq n_{1} \tag{3.40}
\end{equation*}
$$

Combining (3.39) and (3.40), we see that $\left\{w_{n}\right\}$ is a positive solution of the inequality

$$
\Delta w_{n}+E_{n} \frac{\lambda\left(n-\sigma_{1}\right)^{m-1}}{(m-1)!\left(1+d_{1}+d_{2}\right)} w_{n-\sigma_{1}+\tau_{1}}^{\alpha \eta_{1}+\beta \eta_{2}} \leq 0, \quad n \geq n_{1}
$$

which is a contradiction to (3.33). This completes the proof of the theorem.
Theorem 3.8. Assume that $\beta<\alpha<1$. If the first order difference inequality

$$
\begin{equation*}
\Delta w_{n}+\frac{E_{n}}{\left(1+d_{3}+d_{4}\right)} \frac{\lambda}{(m-1)!}\left(n-\sigma_{1}\right)^{m-1} w_{n+\tau_{1}-\sigma_{1}}^{\alpha \eta_{1}+\beta \eta_{2}} \leq 0 \tag{3.41}
\end{equation*}
$$

where $\eta_{1}=\frac{\alpha-\beta}{1-\beta}, \eta_{2}=\frac{1-\alpha}{1-\beta}, d_{3}$ and d_{4} are as in Theorem 3.2, and E_{n} is as defined in Theorem 3.7, has no positive solution, then every solution of the equation (1.1) is oscillatory.
Proof. The proof is similar to Theorem 3.7 and hence it is omitted.
Theorem 3.9. Assume that $\alpha<\beta<1$ holds. If

$$
\begin{equation*}
\sum_{n=n_{1}}^{\infty} R_{n}=\infty \tag{3.42}
\end{equation*}
$$

holds, then every solution of the equation (1.1) is oscillatory.
Proof. Let $\left\{x_{n}\right\}$ be a positive solution of the equation (1.1). Then proceeding as in the proof of Theorem 3.7, we deduce the inequality (3.37). Since $\left\{z_{n}\right\}$ is positive increasing there exists $M>0$ such that $z_{n} \geq M$ for all $n \geq n_{1}$. Then from the inequality (3.37), we obtain

$$
\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+P_{n} M^{\alpha}+Q_{n} M^{\beta} \leq 0, \quad n \geq n_{1}
$$

that is,

$$
\Delta\left(\Delta^{m-1} z_{n}+d_{1} \Delta^{m-1} z_{n-\tau_{1}}+d_{2} \Delta^{m-1} z_{n+\tau_{2}}\right)+R_{n} \leq 0, \quad n \geq n_{1}
$$

Now taking summation from n_{1} to $n-1$ and letting $n \rightarrow \infty$, we get

$$
\sum_{s=n_{1}}^{\infty} R_{s} \leq \Delta^{m-1} z_{n_{1}}+d_{1} \Delta^{m-1} z_{n_{1}-\tau_{1}}+d_{2} \Delta^{m-1} z_{n_{1}+\tau_{2}}<\infty
$$

which is a contradiction to (3.42). This completes the proof.

Corollary 3.10. Assume that $\alpha<1<\beta$ and $\sigma_{1}>\tau_{1}$ hold. If

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sum_{s=n-\left(\sigma_{1}-\tau_{1}\right)}^{n-1} A_{s}\left(s-\sigma_{1}\right)^{m-1}>\frac{\left(1+d_{1}+d_{2}\right)(m-1)!}{\lambda}\left(\frac{\sigma_{1}-\tau_{1}}{\sigma_{1}-\tau_{1}+1}\right)^{\sigma_{1}-\tau_{1}+1} \tag{3.43}
\end{equation*}
$$

then every solution of the equation (1.1) is oscillatory.
Proof. By Theorem 7.5.1 of [10], the condition (3.43) guarantees that the first order difference inequality (3.1) has no positive solution. Now the result follows from Theorem 3.1.

Corollary 3.11. Assume that $\beta<1<\alpha$ and $\sigma_{1}>\tau_{1}$ hold. If

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sum_{n-\left(\sigma_{1}-\tau_{1}\right)}^{n-1} B_{s}\left(s-\sigma_{1}\right)^{m-1}>\frac{\left(1+d_{3}+d_{4}\right)(m-1)!}{\lambda}\left(\frac{\sigma_{1}-\tau_{1}}{\sigma_{1}-\tau_{1}+1}\right)^{\sigma_{1}-\tau_{1}+1} \tag{3.44}
\end{equation*}
$$

then every solution of the equation (1.1) is oscillatory.
Proof. By Theorem 7.5.1 of [10], the condition (3.44) guarantees that the first order difference inequality (3.20) has no positive solution. Now the result follows from Theorem 3.2.

Note that for $\beta>\alpha>1, \eta_{1}=\frac{\alpha-1}{\beta-1}$ and $\eta_{2}=\frac{\beta-\alpha}{\beta-1}$, imply $\alpha \eta_{2}+\beta \eta_{2}>1$. Now using Theorem 3.4, we have the following corollary.

Corollary 3.12. Assume that $1<\alpha<\beta$ and $\sigma_{1}>\tau_{1}$ hold. If there exists a $\mu>0$ such that $\mu>\frac{1}{\sigma_{1}-\tau_{1}} \ln \left(\alpha \eta_{1}+\beta \eta_{2}\right)$, and

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} C_{n}\left(n-\sigma_{1}\right)^{m-1} \exp \left(-e^{\mu n}\right)>0 \tag{3.45}
\end{equation*}
$$

then every solution of the equation (1.1) is oscillatory.
Proof. By Theorem 2 of [14], condition (3.45) guarantees that the first order difference inequality (3.22) has no positive solution. Now the result follows from Theorem 3.4.

Corollary 3.13. Assume that $1<\beta<\alpha$ and $\sigma_{1}>\tau_{1}$ hold. If there exists a $\mu>0$ such that $\mu>\frac{1}{\sigma_{1}-\tau_{1}} \ln \left(\alpha \eta_{1}+\beta \eta_{2}\right)$, and

$$
\begin{equation*}
\lim \inf _{n \rightarrow \infty} D_{n}\left(n-\sigma_{1}\right)^{m-1} \exp \left(-e^{\mu n}\right)>0 \tag{3.46}
\end{equation*}
$$

then every solution of the equation (1.1) is oscillatory.
Proof. By Theorem 2 of [14], condition (3.46) guarantees that the first order difference inequality (3.31) has no positive solution. Now the result follows from Theorem 3.5.

Note that for $\alpha<\beta<1, \eta_{1}=\frac{\beta-\alpha}{1-\alpha}$ and $\eta_{2}=\frac{1-\beta}{1-\alpha}$, we have $\alpha \eta_{2}+\beta \eta_{2}<1$. Now using Theorem 3.7, we have the following corollary.

Corollary 3.14. Assume that $\alpha<\beta<1$ hold. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \sum_{n=n_{0}}^{\infty} E_{s}\left(s-\sigma_{1}\right)^{m-1}=\infty \tag{3.47}
\end{equation*}
$$

then every solution of the equation (1.1) is oscillatory.
Proof. By Theorem 1 of [14], condition (3.47) guarantees that the first order difference inequality (3.33) has no positive solution. Now the result follows from Theorem 3.7.

Note that for $\beta<\alpha<1, \eta_{1}=\frac{\alpha-\beta}{1-\beta}$ and $\eta_{2}=\frac{1-\alpha}{1-\beta}$, we have $\alpha \eta_{2}+\beta \eta_{2}<1$. Now using Theorem 3.8, we have the following Corollary.
Corollary 3.15. Assume that $\beta<\alpha<1$ hold. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \sum_{n=n_{0}}^{\infty} E_{s}\left(s-\sigma_{1}\right)^{m-1}=\infty \tag{3.48}
\end{equation*}
$$

then every solution of the equation (1.1) is oscillatory.
Proof. By Theorem 1 of [14], the condition (3.48) guarantees that the first order difference inequality (3.41) has no positive solution. Now the result follows from Theorem 3.8.

Theorem 3.16. Assume that conditions $\alpha<1<\beta$ and $\sigma_{1} \leq \tau_{1}$ hold. Further assume that there exists real valued function $H: \mathbb{N}_{0} \times \mathbb{N}_{0} \rightarrow \mathbb{R}$ such that

$$
\begin{array}{rll}
H_{n, n}=0 & \text { for } & n \geq n_{0}>0 \\
H_{n, s}>0 & \text { for } & n>s \geq n_{0} \\
\Delta_{2} H_{n, s} \leq 0 & \text { for } & n>s \geq n_{0}
\end{array}
$$

where

$$
\Delta_{2} H_{n, s}=H_{n, s+1}-H_{n, s}
$$

If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{1}{H_{n, n_{1}}} \sum_{s=n_{1}}^{n-1} A_{s} H_{n, s}=\infty, \quad n \geq n_{1} \geq n_{0} \tag{3.49}
\end{equation*}
$$

then every solution of (1.1) is oscillatory.
Proof. Assume that $\left\{x_{n}\right\}$ is a positive solution of the equation (1.1). Then there exists an integer $n_{1} \geq n_{0}$ such that $x_{n}>0, x_{n-\sigma_{1}}>0$ and $x_{n-\tau_{1}}>0$ for all $n \geq n_{1}$. Then by Lemma 2.4, we have $\Delta z_{n}>0$ for all $n \geq n_{1} \geq n_{0}$. Now define a function

$$
w_{n}=\frac{\Delta^{m-1} z_{n}}{z_{n-\tau_{1}}}
$$

for all $n \geq n_{1}$. Then $w_{n}>0$ for all $n \geq n_{1}$, and

$$
\Delta w_{n}=\frac{\Delta^{m} z_{n}}{z_{n-\tau_{1}}}-\frac{\Delta^{m-1} z_{n+1}}{z_{n-\tau_{1}} z_{n+1-\tau_{1}}} \Delta z_{n-\tau_{1}} \leq \frac{\Delta^{m} z_{n}}{z_{n-\tau_{1}}}, \quad n \geq n_{1} .
$$

Similarly by defining v_{n} and u_{n} for all $n \geq n_{1}$, respectively, by

$$
v_{n}=\frac{\Delta^{m-1} z_{n-\tau_{1}}}{z_{n-\tau_{1}}}, \quad n \geq n_{1}
$$

and

$$
u_{n}=\frac{\Delta^{m-1} z_{n+\tau_{2}}}{z_{n-\tau_{1}}}, \quad n \geq n_{1}
$$

we obtain $v_{n}>0$ and $u_{n}>0$ for all $n \geq n_{1}$, and

$$
\Delta v_{n} \leq \frac{\Delta^{m} z_{n-\tau_{1}}}{z_{n-\tau_{1}}}
$$

and

$$
\Delta u_{n} \leq \rho_{n} \frac{\Delta^{m} z_{n+\tau_{2}}}{z_{n-\tau_{1}}}
$$

for all $n \geq n_{1}$. Now combining these inequalities, we obtain

$$
\Delta w_{n}+a^{\beta} \Delta v_{n}+b^{\beta} \Delta u_{n} \leq \frac{1}{z_{n-\tau_{1}}}\left[\Delta^{m} z_{n}+a^{\beta} \Delta^{m} z_{n-\tau_{1}}+b^{\beta} \Delta^{m} z_{n+\tau_{2}}\right]
$$

for all $n \geq n_{1}$. Now using (3.17) and the monotonicity of z_{n}, the last inequality becomes

$$
\Delta w_{n}+a^{\beta} \Delta v_{n}+b^{\beta} \Delta u_{n} \leq-A_{n}
$$

Replacing n by s and multiplying the last inequality by $H_{n, s}$ and then summing the resulting inequality from n_{1} to $n-1$, we have

$$
\sum_{s=n_{1}}^{n-1} A_{s} H_{n, s} \leq-\sum_{s=n_{1}}^{n-1}\left[\Delta w_{s}+a^{\beta} \Delta v_{s}+b^{\beta} \Delta u_{s}\right] H_{n, s}
$$

Now using summation by parts we get

$$
\begin{aligned}
\sum_{s=n_{1}}^{n-1} A_{s} H_{n, s} & \leq H_{n, n_{1}}\left[w_{n_{1}}+a^{\beta} v_{n_{1}}+b^{\beta} u_{n_{1}}\right]+\sum_{s=n_{1}}^{n-1}\left[w_{s+1}+a^{\beta} v_{s+1}+b^{\beta} u_{s+1}\right] \Delta_{2} H_{n, s} \\
& \leq\left[w_{n_{1}}+a^{\beta} v_{n_{1}}+b^{\beta} u_{n_{1}}\right] H_{n, n_{1}}
\end{aligned}
$$

or

$$
\frac{1}{H\left(n, n_{1}\right)} \sum_{s=n_{1}}^{n-1} A_{s} H_{n, s} \leq\left[w_{n_{1}}+a^{\beta} v_{n_{1}}+b^{\beta} u_{n_{1}}\right] .
$$

Taking limsup as $n \rightarrow \infty$, in the last inequality, we obtain

$$
\lim _{n \rightarrow \infty} \sup \frac{1}{H_{n, n_{1}}} \sum_{s=n_{1}}^{n-1} A_{s} H_{n, s}<\infty
$$

which is a contradiction to (3.49). The theorem is now proved.

4. EXAMPLES

In this section, we provide some examples to illustrate the main results.
Example 4.1. Consider an even order neutral difference equation

$$
\begin{equation*}
\Delta^{m}\left(x_{n}+\frac{1}{2} x_{n-1}+\frac{1}{3} x_{n+2}\right)+n x_{n-2}^{\frac{1}{3}}+\frac{1}{n} x_{n+1}^{3}=0, \quad n \geq 1 \tag{4.1}
\end{equation*}
$$

where $m \geq 2$ is an even integer.
Here $a=\frac{1}{2}, b=\frac{1}{3}, \tau_{1}=1, \tau_{2}=2, \sigma_{1}=2, \sigma_{2}=1, p_{n}=n, q_{n}=\frac{1}{n}, \alpha=\frac{1}{3}$ and $\beta=3$. A simple calculation shows that $P_{n}=(n-1), Q_{n}=\frac{1}{n+2}, \eta_{1}=\frac{3}{4}, \eta_{2}=\frac{1}{4}$, $d_{1}=\left(\frac{1}{2}\right)^{1 / 3}, d_{2}=\left(\frac{1}{3}\right)^{1 / 3}$ and $A_{n}=\frac{4}{3^{5 / 4}} \frac{(n-1)^{3 / 4}}{(n+2)^{1 / 4}}$. Further calculation shows that

$$
\liminf _{n \rightarrow \infty} \sum_{s=n-1}^{n-1} \frac{4}{3^{5 / 4}} \frac{(s-1)^{3 / 4}}{(s+2)^{1 / 4}}(s-2)^{(m-1)}=\liminf _{n \rightarrow \infty} \frac{4}{3^{5 / 4}} \frac{(n-2)^{3 / 4}}{(n+1)^{1 / 4}}(n-3)^{(m-1)}=\infty
$$

for all $m \geq 2$. Hence all conditions of Corollary 3.10 are satisfied and therefore every solution of the equation (4.1) is oscillatory.

Example 4.2. Consider an even order neutral difference equation

$$
\begin{equation*}
\Delta^{m}\left(x_{n}+2 x_{n-1}+3 x_{n+2}\right)+n x_{n-2}^{3}+\frac{1}{n} x_{n+1}^{1 / 3}=0, \quad n \geq 1 . \tag{4.2}
\end{equation*}
$$

Here $a=2, b=3, \tau_{1}=1, \tau_{2}=2, \sigma_{1}=2, \sigma_{2}=1, p_{n}=n, q_{n}=\frac{1}{n}, \alpha=3$ and $\beta=\frac{1}{3}$. A simple calculation shows that $P_{n}=(n-1), Q_{n}=\frac{1}{n+2}, \eta_{1}=\frac{3}{4}, \eta_{2}=\frac{1}{4}$, $d_{3}=8, d_{4}=27$ and $B_{n}=\frac{4}{3^{5 / 4}}(n-1)^{3 / 4} \frac{1}{(n+2)^{1 / 4}}$. Also we see that
$\lim _{n \rightarrow \infty} \inf \sum_{s=n-1}^{n-1} \frac{4}{3^{5 / 4}} \frac{(s-1)^{3 / 4}}{(s+2)^{1 / 4}}(s-2)^{(m-1)}=\lim _{n \rightarrow \infty} \inf \frac{4}{3^{5 / 4}} \frac{(n-2)^{3 / 4}}{(n+1)^{1 / 4}}(n-3)^{(m-1)}=\infty$
for all $m \geq 2$. Therefore all conditions of Corollary 3.11 are satisfied and therefore every solution of the equation (4.2) is oscillatory.
Example 4.3. Consider an even order neutral difference equation

$$
\begin{equation*}
\Delta^{m}\left(x_{n}+3 x_{n-1}+3 x_{n+2}\right)+\frac{2^{m}}{n} x_{n-2}^{3}+2^{m}\left(\frac{n+1}{n}\right) x_{n+3}^{5}=0, \quad n \geq 1 \tag{4.3}
\end{equation*}
$$

where $m \geq 2$ is an even integer.
Here $a=b=3, \tau_{1}=1, \tau_{2}=2, \sigma_{1}=2, \sigma_{3}=3, p_{n}=\frac{2^{n}}{n}, q_{n}=2^{m}\left(\frac{n+1}{n}\right), \alpha=3$ and $\beta=5$. Further $P_{n}=\frac{2^{m}}{n+2}, Q_{n}=2^{m}\left(\frac{n+3}{n+2}\right), R_{n}=\frac{2^{m}}{(n+2)}\left(k_{1}+k_{2}(n+3)\right)$ and

$$
\sum_{n=1}^{\infty} R_{n}=\sum_{n=1}^{\infty} \frac{2^{m}}{n+2}\left(k_{1}+k_{2}(n+3)\right)=\infty
$$

Therefore, by Theorem 3.6, every solution of the equation (4.3) is oscillatory. In fact $\left\{x_{n}\right\}=\left\{(-1)^{n}\right\}$ is one such oscillatory solution of equation (4.3).

Remark 4.4.

1. The established results are presented in a form which is essentially new and include some of the existing results as special cases.
2. The existing results $[4,7,9]$ cannot to be applied to equations (4.1), (4.2) and (4.3) since $\alpha \neq 1$ and $\beta \neq 1$.
3. The results of this paper may be extended to equation of the form

$$
\Delta\left(a_{n}\left(\Delta^{m-1}\left(x_{n}+b_{n} x_{n-\tau_{1}}+c_{n} x_{n+\tau_{2}}\right)\right)\right)+q_{n} x_{n-\sigma_{1}}^{\alpha}+p_{n} x_{n+\sigma_{2}}^{\beta}=0
$$

when $\sum_{n=n_{0}}^{\infty} \frac{1}{a_{n}}=\infty$ or $\sum_{n=n_{0}}^{\infty} \frac{1}{a_{n}}<\infty$, and the details are left to the reader.

Acknowledgements

The publication was supported by the Ministry of Education and Science of the Russian Federation (the agreement number N.02.a03.21.0008).
The authors thank the referee for his/her suggestions and corrections that improved the content of the paper.

REFERENCES

[1] R. Ali-Hamouri, A. Zein, Oscillation criteria for certain even order neutral delay differential equations, Inter. J. Diffential Equ. 2014 (2014), Article ID 437278, 5 pp.
[2] R.P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications, 2nd ed., Marcel Dekker, New York, 2000.
[3] R.P. Agarwal, S.R. Grace, Oscillation criteria for certain higher order difference equations, Math. Sci. Res. J. 6 (2002), 60-64.
[4] R.P. Agarwal, S.R. Grace, E.A. Bohner, On the oscillation of higher order neutral difference equations of mixed type, Dynam. Systems Appl. 11 (2002), 459-470.
[5] R.P. Agarwal, S.R. Grace, D. O'Regan, On the oscillation of higher order difference equations, Soochow J. Math. 31 (2005), 245-259.
[6] R.P. Agarwal, E. Thandapani, P.J.Y. Wong, Oscillation of higher order neutral difference equations, Appl. Math. Lett. 10 (1997), 71-78.
[7] R.P. Agarwal, M. Bohner, S.R. Grace, D. O'Regan, Discrete Oscillation Theory, Hindawi, New York, 2005.
[8] Y. Bolat, O. Akin, Oscillatory behavior of higher order neutral type functional difference equation with oscillating coefficient, Appl. Math. Lett. 17 (2004), 1073-1078.
[9] S.R. Grace, Oscillation of certain neutral difference equations of mixed type, J. Math. Anal. Appl. 224 (1998), 241-254.
[10] I. Gyori, G. Ladas, Oscillation Theorey of Delay Differential Equations with Applications, Claredon Press, Oxford, 1991.
[11] M. Migda, On the discrete version of generalized Kiguradzes lemma, Fasci. Math. 35 (2005), 1-7.
[12] D. Seghar, S. Selvarangam, E. Thandapani, Oscillation criteria for even order nonlinear neutral difference equation, Differ. Equ. Appl. 6 (2014), 441-453.
[13] E. Thandapani, Oscillation theorems for higher order nonlinear difference equations, Indian J. Pure Appl. Math. 25 (1994), 519-524.
[14] X.H. Tang, Y.J. Liu, Oscillation for nonlinear delay difference equations, Tamkang J. Math. 32 (2001), 275-280.
S. Selvarangam
selvarangam.9962@gmail.com
Department of Mathematics
Presidency College Chennai - 600 005, India
S.A. Rupadevi

Department of Mathematics
Presidency College Chennai - 600 005, India
E. Thandapani
ethandapani@yahoo.co.in
University of Madras
Ramanujan Institute for Advanced Study in Mathematics
Chennai - 600 005, India
S. Pinelas
sandra.pinelas@gmail.com
RUDN University
6 Miklukho-Maklaya Str., 117198, Moscow, Russia
Received: February 11, 2018.
Revised: July 7, 2018.
Accepted: July 7, 2018.

