PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of small size non-pneumatic tires and pneumatic tires - radial stiffness and hysteresis, selected parameters of the contact patch

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, non-pneumatic tires are becoming an increasingly likely alternative to pneumatic tires. The function of compressed air has been taken over by the belt and the elastic structure (materials used and shape of the components). The research presented in the paper was carried out in quasi-static conditions. The research's aim was to compare the radial stiffness, hysteresis and selected parameters of the contact patch of two non-pneumatic tires and four pneumatic tires used interchangeably in ATVs/UTVs. The analyzed non-pneumatic tires are characterized by greater radial stiffness than pneumatic tires of the same size. Moreover the wheel with a cellular structure has the highest hysteresis of the radial characteristics of the tested wheels and the highest values of the unit pressure in the area of contact patch. The paper also verified two methods of calculating the contact patch length of non-pneumatic tires.
Rocznik
Strony
art. no. 167362
Opis fizyczny
Bibliogr. 40 poz., fot., rys., tab., wykr.
Twórcy
  • Military University of Technology, Warsaw Poland
  • Military University of Technology, Warsaw Poland
  • Military University of Technology, Warsaw Poland
Bibliografia
  • 1. 49 CFR § 571.129 - Standard No. 129; New non-pneumatic tires for passenger cars [https://www.govinfo.gov/content/pkg/CFR-2014-title49-vol6/pdf/CFR-2014-title49-vol6-sec571-129.pdf].
  • 2. Ali M, et. al. Design and structural analysis of non-pneumatic tyres for different structures of polyurethane spokes. Journal of Engineering and Applied Science 2022, 69 :1-21, 10.1186/s44147-022-00093-5.
  • 3. Choi S J, et al. Non-Pneumatic Tire with Reinforcing Member Having Plate Wire Structure, US 2014/0238561 A1.
  • 4. Cron S, M., Variable Stiffness Spoke For a Non-Pneumatic Assembly. European Patent Office, EP2066502B1.
  • 5. Ganniari-Papageorgiou, E, Chatzistergos P, Wang X, The influence of the honeycomb design parameters on the mechanical behavior of non-pneumatic tires. Int. J. Appl. Mech. 2020, 12 (3): 1-15, https://doi.org/10.1142/S1758825120500246.
  • 6. Genovese A, Garofano D, Sakhnevych A, Timpone F, Farroni F. Static and Dynamic Analysis of Non-Pneumatic Tires Based on Experimental and Numerical Methods. Appl. Sci. 2021, 11, 11232: 1-19, https://doi.org/10.3390/app112311232.
  • 7. Hryciów Z, Jackowski J, Żmuda M, The Influence of Non-Pneumatic Tyre Structure on its Operational Properties. International Journal of Automotive and Mechanical Engineering 2020, vol. 17, nr 3: 8168-8178, DOI:10.15282/ijame.17.3.2020.10.0614.
  • 8. Hun K Y. Non-Pneumatic Tire Having Improved Riding Comfort, European Patent Specification, EP 2987645B1.
  • 9. Jackowski J, Luty W, Wieczorek M. Oszacowanie oporu toczenia ogumienia 12R22.5. Biuletyn WAT, Vol. L, nr 9, pp. 25-36, 2001.
  • 10. Jackowski J, Żmuda M, Wieczorek M, Zuska A. Quasi-Static Research of ATV/UTV Non-Pneumatic Tires. Energies 14 (20) 2021, 1-12. https://doi.org/10.3390/en14206557.
  • 11. Jin X, Hou C, Fan X, Sun Y, Lv J, Lu C. Investigation on the static and dynamic behaviors of non-pneumatic tires with honeycomb spokes. Composite Structures 2018, 187, 27-35, https://doi.org/10.1016/j.compstruct.2017.12.044.
  • 12. Kulikowski K, Szpica D. Determination of directional stiffnesses of vehicles’ tires under a static load operation. Maintenance and Reliability 2014, 16 (1): 66-72.
  • 13. Luty W, Prochowski L, Szurkowski Z. Stanowisko do badań ogumienia dużego rozmiaru. W: VII Międzynarodowe Symp. IPM. Warszawa-Rynia 1999: 375 – 382.
  • 14. Manesh A, et. al. Tension-Based Non-Pneumatic Tire, United States Patent, US 8109308 B2.
  • 15. Manesh A, et. al. Tension-Based Non-Pneumatic Tire, United States Patent, US 8176957 B2.
  • 16. Maxxis® Tires, North American Powersports Catalog, vol. 20. [https://cdn.brandfolder.io/YVLOXW06/at/q4xf8c-7dhf4o-7dxojl/2020_Maxxis_US_pecialty_catalog_lo-res.pdf].
  • 17. Polaris Pro Armour Wheels & Tires. [https://offroad.polaris.com/en-us/catalogs].
  • 18. Prochowski L. Mechanika ruchu. WKŁ 2008. ISBN : 9788320617016.
  • 19. Regulation No 54 of the Economic Commission for Europe of the United Nations (UNECE) — Uniform provisions concerning the approval of pneumatic tyres for commercial vehicles and their trailers [https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A42011X0330%2802%29].
  • 20. Regulation No 75 of the Economic Commission for Europe of the United Nations (UN/ECE) — Uniform provisions concerning the approval of pneumatic tyres for motor cycles and mopeds [https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:42011X0330(02)].
  • 21. Rhyne T B, Cron S M, Pompier J-P. Compliant Wheel, United States Patent, US 7013939B2.
  • 22. Rhyne T B, DeMino K W, Cron S M, Structurally Supported Resilient Tire. United States Patent, US 6769465B2.
  • 23. Rhyne T B, Development of a Vertical Stiffness Relationship for Belted Radial Tires. Tire Science and Technology 2005, 33 (3): 136-155, https://doi.org/10.2346/1.2174340.
  • 24. Rhyne T, Cron S, Development of a non-pneumatic wheel. Tire Sci Technol 2006; 34(3): 150-169, https://doi.org/10.2346/1.2345642.
  • 25. Rill G, Castro A A. Road Vehicle Dynamics Fundamentals and Modeling with MATLAB® Second Edition. CRC Press 2020. https://doi.org/10.1201/9780429244476
  • 26. Rugsaj R, Suvanjumrat C. Development of a Transient Dynamic Finite Clement Model for the Drum Testing of a NonPneumatic Tire. IOP Conf. Ser.: Mater. Sci. Eng. 2020 886 012056, 1-8, DOI 10.1088/1757-899X/886/1/012056.
  • 27. Rugsaj R, Suvanjumrat C. Proper Radial Spokes of Non-Pneumatic Tire for Vertical Load Supporting by Finite Element Analysis. International Journal of Automotive Technology 2019, 20 (4): 801-812, DOI 10.1007/s12239-019-0075-y.
  • 28. Ružinskas A, Giessler M, Gauterin F, Wiese K, Bogdevičius M. Experimental investigation of tire performance on slush. Maintenance and Reliability 2021; 23 (1): 103–109, http://dx.doi.org/10.17531/ein.2021.1.11.
  • 29. Terrainarmor Non-Pneumatic Tires. [https://shop.checkeredflagrecreation.com/polaris-industries-terrainarmor-non-pneumatic-tires-detail.htm?productid=22720982].
  • 30. The MICHELIN® X® Tweel® Airless Radial Tire Family. [https://tweel.michelinman.com/].
  • 31. Thompson R H. Shear Band, United States Patent, US 2010/0018621 A1.
  • 32. Valentin I, Analysis of Tire Contact Parameters Using Visual Processing. Advances in Tribology 2010: 1-11, 10.1155/2010/491723.
  • 33. Vinay T V, Marattukalam K J, Varghese S Z, Samuel S, Sreekumar S. Modeling and Analysis of Non-Pneumatic Tyres with Hexagonal Honeycomb Spokes. International Journal on Recent Technologies in Mechanical and Electrical Engineering (IJRMEE) 2015, Volume: 2 Issue: 3: 019 – 024, ISSN: 2349-7947.
  • 34. Xu T, Yang J, Zhu L, Gao F. Lightweight Design Optimization of Nonpneumatic Tires under Radial-Stiffness Constraints. Machines 2022, 10 (10), 889: 1-16, https://doi.org/10.3390/machines10100889.
  • 35. Yaoji D, Zhiyue W, Hui S, Junjie G, Zhen X. A comprehensive review on non-pneumatic tyre research. Materials & Design 2023, 227, 1- 22, https://doi.org/10.1016/j.matdes.2023.111742.
  • 36. Zhang Z, Fu H, Liang X, Chen X, Tan D. Comparative Analysis of Static and Dynamic Performance of Nonpneumatic Tire with Flexible Spoke Structure. Strojniški vestnik - Journal of Mechanical Engineering 2020, 66: 458-466, 10.5545/sv-jme.2020.6676.
  • 37. Zhao Y, Du X, Lin F, Wang Q, Fu H. Static stiffness characteristics of a new non-pneumatic tire with different hinge structure and distribution. J. Mech. Sci. Technol. 2018, 32: 3057–3064, DOI 10.1007/s12206-018-0608-8.
  • 38. Zheng Z, Rakheja S, Sedaghati R. Multi-axis stiffness and road contact characteristics of honeycomb wheels: A parametric analysis using Taguchi method. Composite Structures 2022, 279, 114735, 1-14, https://doi.org/10.1016/j.compstruct.2021.114735.
  • 39. Żmuda M, Construction analysis of non-pneumatic tires. Biuletyn WAT 2021, 70 (1): 113-128, DOI:10.5604/01.3001.0015.6962.
  • 40. Żuchowski A. Analiza wpływu niejednorodnych właściwości kół jezdnych na drgania samochodu. PhD thesis, Warszawa 2002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fa64215-4b5f-497b-85e3-454f3a0ccdf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.