PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Hybrydowe procesy skrawania wspomagane nanocieczami. Część 2: Przykłady wpływu nanocieczy na proces skrawania

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Media-assisted machining processes using nano-fluids. Part 2: Examples of the influence of nano-fluids on the cutting process
Języki publikacji
PL
Abstrakty
PL
Przedstawiono zwięzłe informacje na temat zastosowania nanocieczy do wspomagania hybrydowych procesów skrawania mediami ciekłymi, które zasadniczo znalazły zastosowanie w minimalnym smarowaniu/chłodzeniu MQL. W pierwszej części artykułu omówiono właściwości dodawanych do cieczy bazowych (olejów roślinnych i mineralnych oraz emulsji) nanocząstek i ich wpływ na przebieg procesu skrawania. Scharakteryzowano mechanizmy tribologiczne w strefie kontaktu i pochodne oddziaływania termiczne. W drugiej części artykułu zostaną opisane praktyczne przykłady wpływu nanocieczy na temperaturę skrawania, przebieg zużycia i trwałość ostrza oraz chropowatość i jakość powierzchni. Wykazano dużą efektywność zastosowania nanocieczy z dodatkami grafenu i nanorurek.
EN
The comprehensive knowledge of the applications of nano-fluids for hybrid machining processes assisted by liquid media, which, in general, are applied in MQL systems is presented. In the first part of the article properties of nano-additives, which are added to base cutting fluids (such as vegetable and mineral oils and emulsion), and their influence on the performance of machining processes were outlined. The tribological mechanisms including rolling and plowing of the nano-particles in the contact zones, as well as resulting thermal influences were characterized. In the second part of the article, some practical examples of the possible influences of different nano-fluids on the cutting temperature, tool wear and tool life, surface roughness and surface quality are provided and discussed. It was concluded that nano-fluids with graphene and carbon nanotubes additives are very effective in improving process behaviour.
Czasopismo
Rocznik
Strony
7--11
Opis fizyczny
Bibliogr. 19 poz., rys., tabl.
Twórcy
autor
  • Katedra Technologii Maszyn i Automatyzacji Produkcji Politechniki Opolskiej, Opole, Polska
Bibliografia
  • [1] Grzesik W. „Hybrydowe procesy obróbki ubytkowej. Definicje, zasady tworzenia i znaczenie w przemyśle”. Mechanik. 91, 5–6 (2018): 338–341, https://doi.org/10.17814/ mechanik.2018.5-6.50.
  • [2] Grzesik W. „Hybrydowe procesy skrawania wspomagane mediami technologicznymi” (“Media-assisted machining processes”). Mechanik. 91, 12 (2018): 1050–1056, DOI: https://doi.org/10.17814/mechanik.2018.12.186.
  • [3] Kulkarni H.B., Nadakatti M.M., Patil M.S., Kulkarni R.M. “A review on nanofluids for machining”. Current Nanoscience. 13, 6 (2017): https://doi.org/10.2174/15734137 13666170623094121 .
  • [4] Sidik N., Samion S., Ghaderian J., Yazid M. “Recent progress on the application of nanofluids in minimum quantity lubrication machining. A review”. Int. Journal of Heat and Mass Transfer. 108 (2017): 79–89, https://doi. org/10.1016/j.ijheatmasstransfer.2016.11.105.
  • [5] Shokoohi Y., Shekarian E. „Application of nanofluids in machining processes – a review”. J. Nanoscience and Technology. 2 (2016): 59-63, https://www.researchgate.net/ publication/325514175_Application_of_Nanofluids_in_ Machining_Processes_-_A_Review.
  • [6] Khandekar S., Sankar M., Ramkumar J. “Nano-cutting fluid for enhancement of metal cutting performance”. Materials and Manufacturing Processes. 27 (2012): 1–5, https://doi. org/10.1080/10426914.2011.610078.
  • [7] Gupta M., Jamil M., Wang X., Song Q., Liu Z., Mia M., et. al. “Performance evaluation of vegetable oil-based nano-cutting fluids in environmentally friendly machining of In - conel-800 alloy”. Materials. 12 (2019): 2702, https://doi. org/10.3390/ma12172792.
  • [8] Grzesik W. „Podstawy skrawania materiałów konstrukcyjnych”. Warszawa: PWN, 2018. [9] Hegab H., Umer U., Esawi A., Kishawy H.A. “Tribological mechanisms of nano-cutting fluid minimum quantity lubrication: a comparative performance analysis model”. Int. J. Advanced Manufacturing Technology. 108 (2020): 3133– –3139, https://doi.org/10.1007/s00170-020-05450-3.
  • [10] Hegab H., Darras B., Kishawy H.A. “Sustainability assessment of machining with nano-cutting fluids”. Procedia Manufacturing. 26 (2018): 245–254, https://doi.or g/10.1016/j.promfg.2018.07.033.
  • [11] Hegab H., Kishawy H.A., Umer U., Mohany A. “A model for machining with nano-additives based minimum quantity lubrication”, Int. J. Advanced Manufacturing Technology. 102 (2019): 2013–2028, https://doi.org/10.1007/ s00170-019-03294-0.
  • [12] Li M., Yu T., Zhang R., Yang L., Li H., Wang W. “MQL milling of TC4 alloy by dispersing graphene into vegetable oil-based cutting fluid”. Int. J. Advanced Manufacturing Techno logy. 99 (2018): 1735–1753, https://doi.org/10.1007/ s00170-018-2576-7.
  • [13] Gűnan F., Kivak T., Yildrim C., Sarikaya M. “Performance evaluation of MQL with Al 2 O 3 mixed nanofluids prepared at different concenrations in milling of Hastelloy C276 alloy”. J. Materials Research and Technology. 9, 5 (2020): 10386– –10400, https://doi.org/10.1016/j.jmrt.2020.07.018.
  • [14] Samuel J., Rafiee J., Dhiman P., Yu Z., Koratkar N. “Graphene colloidal suspensions as high performance demi-synthetic metalworking fluids”. J. Physical Chemistry. 115 (2011): 3410–3415, https://doi.org/10.1021/jp110885n.
  • [15] Kadirgama K. “Nanofluid as an alternative coolant in ma chining: a review”. J. Advanced Research in Fluid Mechanics and Thermal Sciences. 69 (2020): 163–173, https://doi. org/10.37934/arfmts.69.1.163173.
  • [16] Minh D.T., The L.T., Bao N.T. “Performance of Al 2 O 3 nano fluids in minimum quantity lubrication in hard milling of 60Si2Mn steel using cemented carbide tools”. Advances in Mechanical Engineering. 9, 7 (2017): 1–9, https://doi. org/10.1177%2F1687814017710618.
  • [17] Lee P.H., Nam J.S., Li C., Lee S.W. “An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL)”. Int. J. Precision Eng. Manuf. 13 (2012): 331–338, https://doi.org/10.1007/s12541-012-0042-2.
  • [18] Nam J.S., Lee P.H., Lee S.W. “Experimental characterization of micro-drilling process using nanofluid minimum quantity lubrication”. Int. J. Mach. Tools. Manuf. 51 (2011): 649– –652, https://doi.org/10.1016/j.ijmachtools.2011.04.005.
  • [19] Grzesik W. “Media-assisted machining processes using nano-fluids. Part 1: Properties and mechanisms of nano-flu ids interaction” („Hybrydowe procesy skrawania wspomagane nanocieczami. Część 1: Właściwości i mechanizmy oddziaływania nanocieczy”). Mechanik. 2 (2021): 6–9, https://doi.org/10.17814/mechanik.2021.2.3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8fa11cab-eace-4206-b54a-f67b503aa2e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.