PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Virtual Physics Framework for Multi-Robot Chemical Plume Tracing under Ventilated Indoor Condition

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wykorzystanie multi-robotów do śledzenia dymu w wentylowanych pomieszczeniach
Języki publikacji
EN
Abstrakty
EN
This paper presents a virtual-physics based control framework for swarm robotic chemical plume tracing and source localization problem under ventilated indoor environment with complex turbulent conditions. The control force includes three kinds of effort, which are lattice formation force, plume tracing force, and obstacle avoidance force. The plume tracing and source identify strategy are based on the chemical mass flux passing through the robot colony. Simulation results show that the proposed control framework and tracing strategy can effectively navigate the multi-robot system to the chemical source emitter region. The virtual-physics based framework is highly flexible, endows the robot formation the properties of self-organization and self-repair. Compare to traditional approaches, the mass flux driven plume tracing can inhibit the robots from adhering to the obstacle-induced local density maxima and guide the robots forward to the real source region.
W artykule opisano metodę śledzenia smugi dymu chemicznego przy wykorzystaniu robotów oraz metodę wykrywania źródła dymu w pomieszczeniu wentylowanym przy zawirowaniu powietrza. Stosowane są trzy środki – określenie siatki, śledzenie dymu i eliminacja zjawiska. Roboty śledzące mogą się same organizować i naprawiać. W porównaniu do innych metod zaproponowana metoda zabezpiecza roboty przed zatrzymaniem się przy lokalnym maksimum i prowadzi je do źródła dymu.
Słowa kluczowe
Rocznik
Strony
92--99
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
autor
  • School of Automation Science and Electrical Engineering, Beihang University
autor
  • School of Automation Science and Electrical Engineering, Beihang University
autor
  • School of Information Engineering, Guangdong University of Technology
Bibliografia
  • [1] W. Spears, D. Spears, J. Hamann, and R. Heil, “Distributed, physics-based control of swarms of vehicles,” Autonomous Robots, vol. 17, no. 2, pp. 137–162, 2004.
  • [2] N. Vickers, “Mechanisms of animal navigation in odor plumes,” Biological Bulletin, vol. 198, no. 2, pp. 203–212, 2000.
  • [3] X. Kang, W. Li, H. Xu, X. Feng, and Y. Li, “Validation of an odor source identification algorithm via an underwater vehicle,” in 2012 Int. Conf. Intelligent System Design and Engineering Application, pp. 740–743, IEEE, 2012.
  • [4] R. Russell, D. Thiel, R. Deveza, and A. Mackay-Sim, “A robotic system to locate hazardous chemical leaks,” in Proc. of the 1995 IEEE Int. Conf. Robotics and Automation, vol. 1, pp. 556–561, 1995.
  • [5] H. Ishida, T. Nakamoto, and T. Moriizumi, “Remote sensing of gas/odor source location and concentration distribution using mobile system,” Sensors and Actuators B: Chemical, vol. 49, no. 1-2, pp. 52–57, 1998.
  • [6] F. Grasso, T. Consi, D. Mountain, and J. Atema, “Locating odor sources in turbulence with a lobster inspired robot,” From Animals to Animats, vol. 4, pp. 104–112, 1996.
  • [7] A. Lilienthal, A. Zell, M.Wandel, and U.Weimar, “Sensing odour sources in indoor environments without a constant airflow by a mobile robot,” in Proc. of the 2001 IEEE Int. Conf. Robotics and Automation, vol. 4, pp. 4005–4010, 2001.
  • [8] A. Ramirez, A. Lopez, A. Rodríguez, A. de Albornoz, and E. De Pieri, “An infotaxis based odor navigation approach,” in 2011 ISSNIP Biosignals and Biorobotics Conf., pp. 1–6, IEEE, 2011.
  • [9] A. Farah and T. Duckett, “Reactive localisation of an odour source by a learning mobile robot,” in Proc. of the 2nd Swedish Workshop on Autonomous Robotics, pp. 29–38, 2002.
  • [10] J. Farrell, J. Murlis, X. Long, W. Li, and R. Cardé, “Filamentbased atmospheric dispersion model to achieve short timescale structure of odor plumes,” Environmental Fluid Mechanics, vol. 2, no. 1, pp. 143–169, 2002.
  • [11] A. Hayes, A. Martinoli, and R. Goodman, “Swarm robotic odor localization,” in Proc. of the 2001 IEEE Int. Conf. Intelligent Robots and Systems, vol. 2, pp. 1073–1078, 2001.
  • [12] Y. Zou, D. Luo, and W. Chen, “Swarm robotic odor source localization using ant colony algorithm,” in Proc. of the 2009 IEEE Int. Conf. Control and Automation, pp. 792–796, 2009.
  • [13] Q. Meng, W. Yang, Y. Wang, and M. Zeng, “Multi-robot odorplume tracing in indoor natural airflow environments using an improved aco algorithm,” in 2010 IEEE Int. Conf. Robotics and Biomimetics, pp. 110–115, IEEE, 2010.
  • [14] S. Hettiarachchi and W. Spears, “Physicomimetics for mobile robot obstacle avoidance,” in 2012 13th ACIS Int. Conf. Software Engineering, Artificial Intelligence, Networking and Parallel & Distributed Computing, pp. 444–450, IEEE, 2012.
  • [15] J. Crimaldi, M. Koehl, and J. Koseff, “Effects of the resolution and kinematics of olfactory appendages on the interception of chemical signals in a turbulent odor plume,” Environmental Fluid Mechanics, vol. 2, no. 1, pp. 35–64, 2002.
  • [16] J. Hurtado, R. Robinett, C. Dohrmann, and S. Goldsmith, “Distributed sensing and cooperating control for swarms of robotic vehicles,” in Proc. of the 1998 IASTED Conf. Control and Applications, pp. 175–178, 1998.
  • [17] G. Sandini, G. Lucarini, and M. Varoli, “Gradient driven selforganizing systems,” in Proc. of the 1993 IEEE Int. Conf. Intelligent Robots and Systems, vol. 1, pp. 429–432, 1993.
  • [18] S. Kazadi, “Extension of plume tracking behavior to robot swarms,” in Proc. of the 2003 World Multi Conf. Systemics, Cybernetics and Informatics, 2003.
  • [19] M. Wandel, A. Lilienthal, T. Duckett, U. Weimar, and A. Zell, “Gas distribution in unventilated indoor environments inspected by a mobile robot,” in Proc. of the 2003 IEEE Int. Conf. Advanced Robotics, pp. 507–512, 2003.
  • [20] R. Russell and A. Purnamadjaja, “Odor and airflow: Complementary senses for a humanoid robot,” in Proc. of the 2002 IEEE Int. Conf. Robotics and Automation, vol. 2, pp. 1842–1847, 2002.
  • [21] H. Ishida, T. Nakamoto, T. Moriizumi, T. Kikas, and J. Janata, “Plume-tracking robots: A new application of chemical sensors,” Biological Bulletin, vol. 200, no. 2, pp. 222–226, 2001.
  • [22] J. Farrell, S. Pang, and W. Li, “Plume mapping via hidden markov methods,” IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 33, no. 6, pp. 850–863, 2003.
  • [23] S. Pang and J. Farrell, “Chemical plume source localization,” IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 36, no. 5, pp. 1068–1080, 2006.
  • [24] A. Loutfi, S. Coradeschi, and J. Gonzalez, “Gas distribution mapping of multiple odour sources using a mobile robot,” Robotica, vol. 27, no. 2, pp. 311–319, 2009.
  • [25] A. Lilienthal and T. Duckett, “Building gas concentration gridmaps with a mobile robot,” Robotics and Autonomous Systems, vol. 48, no. 1, pp. 3–16, 2004.
  • [26] A. Hayes, A. Martinoli, and R. Goodman, “Distributed odor source localization,” IEEE Sensors Journal, vol. 2, no. 3, pp. 260–271, 2002.
  • [27] R. Russell, “Laying and sensing odor markings as a strategy for assisting mobile robot navigation tasks,” IEEE Robotics and Automation Magazine, vol. 2, no. 3, pp. 3–9, 1995.
  • [28] D. Zarzhitsky, D. Spears, and W. Spears, “Distributed robotics approach to chemical plume tracing,” in Proc. of the 2005 IEEE Int. Conf. Intelligent Robots and Systems, pp. 4034–4039, 2005.
  • [29] X. Cui, T. Hardin, R. Ragade, and A. Elmaghraby, “A swarmbased fuzzy logic control mobile sensor network for hazardous contaminants localization,” in Proc. of the 2004 IEEE Int. Conf. Mobile Ad-hoc and Sensor Systems, pp. 194–203, 2004.
  • [30] J. T. Feddema, R. D. Robinett, and R. H. Byrne, “An optimization approach to distributed controls of multiple robot vehicles,” in Workshop on Control and Cooperation of Intelligent Miniature Robots, IEEE Int. Conf. Intelligent Robots and Systems, 2003.
  • [31] M. Polycarpou, Y. Yang, and K. Passino, “Cooperative control of distributed multi-agent systems,” IEEE Control Systems Magazine, 2001.
  • [32] W. Spears and D. Gordon, “Using artificial physics to control agents,” in Proc. of the 1999 IEEE Int. Conf. Information Intelligence and Systems, pp. 281–288, 1999.
  • [33] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” International Journal of Robotics Research, vol. 5, no. 1, p. 90, 1986.
  • [34] C. Belta and V. Kumar, “Trajectory design for formations of robots by kinetic energy shaping,” in Proc. of the 2002 IEEE Int. Conf. Robotics and Automation, vol. 3, pp. 2593–2598, 2002.
  • [35] J. Fax and R. Murray, “Information flow and cooperative control of vehicle formations,” IEEE Trans. on Automatic Control, vol. 49, no. 9, pp. 1465–1476, 2004.
  • [36] D. EDWARDS, T. BEAN, D. ODELL, and M. ANDERSON, “A leader-follower algorithm for multiple auv formations,” in Proc. of the IEEE/OES Autonomous Underwater Vehicles Conf., pp. 40–46, 2004.
  • [37] C. Frey, D. Zarzhitsky, W. Spears, D. Spears, C. Karlsson, B. Ramos, J. Hamann, and E. Widder, “A physicomimetics control framework for swarms of autonomous surface vehicles,” in Proc. of the OCEANS 2008, pp. 1–6, 2008.
  • [38] A. Lilienthal and T. Duckett, “A stereo electronic nose for a mobile inspection robot,” in Proc. of the 2003 Int. Workshop Robotic Sensing, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f9ca659-10a5-42cf-9075-4b894ab58e79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.