Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Noise suppression is of great importance to seismic data analysis, processing and interpretation. Random noise always overlaps seismic reflections throughout the time and frequency, thus, its removal from seismic records is a challenging issue. We propose an adaptive time-reassigned synchrosqueezing transform (ATSST) by introducing a time-varying window function to improve the time-frequency concentration, and integrate an improved Optshrink algorithm for the suppression of seismic random noise. First of all, a noisy seismic signal is transformed into a sparse time-frequency matrix via the ATSST. Then, the obtained time-frequency matrix is decomposed into a low-rank component and a sparse component via an improved Optshrink algorithm, where the D transformation and its first derivative are further simplified to reduce the computational burden of the original OptShrink algorithm. Finally, the denoised signal is reconstructed by implementing an inverse ATSST on the low-rank component. We have tested the proposed method using synthetic and real datasets, and make a comparison with some classical denoising algorithms such as f - x deconvolution and Cadzow filtering. The obtained results demonstrate the superiority of the proposed method in denoising seismic data.
Wydawca
Czasopismo
Rocznik
Tom
Strony
829--847
Opis fizyczny
Bibliogr. 62 poz.
Twórcy
autor
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, North Third Ring East Road 15th, Chaoyang District, Beijing 100029, China
autor
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, North Third Ring East Road 15th, Chaoyang District, Beijing 100029, China
autor
- Cooperative Innovation Center of Unconventional Oil and Gas (Ministry of Education and Hubei Province), Yangtze University, Daxue Road 111th, Caidian District, Wuhan 430100, China
- Key Laboratory of Exploration Technology for Oil and Gas Resources of Ministry of Education, Yangtze University, Daxue Road 111th, Caidian District, Wuhan 430100, China
Bibliografia
- 1. Abma R, Claerbout J (1995) Lateral prediction for noise attenuation by t—x and f-x techniques. Geophysics 60:1887-1896
- 2. Anvari R, Siahsar M, Gholtashi S, Kahoo A, Mohammadi M (2017) Seismic random noise attenuation using synchrosqueezed wavelet transform and low-rank signal matrix approximation. IEEE Trans Geosci Remote Sens 55:6574-6581
- 3. Bayati F, Trad D (2023) 3-D data interpolation and denoising by an adaptive weighting rank-reduction method using multichannel singular spectrum analysis algorithm. Sensors (Basel) 23:577
- 4. Bekara M, van der Baan M (2007) Local singular value decomposition for signal enhancement of seismic data. Geophysics 72:V59-V65
- 5. Bing P, Liu W, Zhang Z (2020) A robust random noise suppression method for seismic data using sparse low-rank estimation in the time-frequency domain. IEEE Access 8:183546-183556
- 6. Cai J, Candes E, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20:1956-1982
- 7. Canales L (1984) Random noise reduction: SEG, expanded abstracts. 54th Annual international meeting, pp 525-527
- 8. Chen Y, Fomel S (2018) Emd-seislet transform. Geophysics 83:A27-A32
- 9. Chen Y, Ma J (2014) Random noise attenuation by f - x empirical-mode decomposition predictive filtering. Geophysics 79:V81-V91
- 10. Chen Y, Zhang D, Jin Z, Chen X, Zu S, Huang W, Gan S (2016) Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method. Geophys J Int 206:1695-1717
- 11. Chen Y, Zhou Y, Chen W, Zu S, Huang W, Zhang D (2017) Empirical low rank decomposition for seismic noise attenuation. IEEE Trans Geosci Remote Sens 55(8):4696-4711
- 12. Dong X, Li Y (2021) Denoising the optical fiber seismic data by using convolutional adversarial network based on loss balance. IEEE Trans Geosci Remote Sens 59:10544-10554
- 13. Dong X, Li Y, Yang B (2019) Desert low-frequency noise suppression by using adaptive DnCNNs based on the determination of high-order statistic. Geophys J Int 219:1281-1299
- 14. Dong X, Zhong T, Li Y (2021) A deep-learning-based denoising method for multiarea surface seismic data. IEEE Geosci Remote Sens Lett 18:925-929
- 15. Dong X, Liu J, Lu S, Huang X, Wang H, Li Y (2022) Seismic shot gather denoising by using a supervised-deep-learning method with weak dependence on real noise data: a solution to the lack of real noise data. Surv Geophys 43:1363-1394
- 16. Dragomiretskiy K, Zosso D (2014) Variational mode decomposition. IEEE Trans Signal Process 62:531-544
- 17. Feng J, Liu X, Li X, Xu W, Liu B (2022) Low-rank tensor minimization method for seismic denoising based on variational mode decomposition. IEEE Geosci Remote Sens Lett 19:1-5
- 18. Fu C, Gong Z, Chen L, Yang S, Zhang L, Chen Y (2022) 3-D structural complexity-guided predictive filtering: a comparison between different non-stationary strategies. IEEE Trans Geosci Remote Sens 60:1-15
- 19. Ghosh T, Saha RK, Singh SK, Jenamani M, Routray A (2023) LRSTV: a low-rank total variation-based seismic fault preserving denoising algorithm. J Appl Geophys 210:104948
- 20. He D, Cao H, Wang S, Chen X (2019) Time-reassigned synchrosqueezing transform: the algorithm and its applications in mechanical signal processing. Mech Syst Signal Process 117:255-279
- 21. Herrmann FJ, Boniger U, Verschuur DJ (2007) Non-linear primary multiple separation with directional curvelet frames. Geophys J Int 170:781-799
- 22. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc Lond Ser A 454:903-995
- 23. Huang W, Wang R, Chen Y, Li H, Gan S (2016) Damped multichannel singular spectrum analysis for 3D random noise attenuation. Geophysics 81:V261-V270
- 24. Ji G, Wang C (2022) A denoising method for seismic data based on SVD and deep learning. Appl Sci 12:12840
- 25. Kong D, Peng Z (2015) Seismic random noise attenuation using shear-let and total generalized variation. J Geophys Eng 12:1024-1035
- 26. Lan T, Zeng Z, Han L, Zeng J (2023) Seismic data denoising based on wavelet transform and the residual neural network. Appl Sci 13:655
- 27. Li F, Zhang B, Verma S, Marfurt KJ (2018) Seismic signal denoising using thresholded variational mode decomposition. Explor Geophys 49:450-461
- 28. Li J, Fan W, Li Y, Yang B, Lu C (2020) Desert seismic noise suppression based on an improved low-rank matrix approximation method. J Appl Geophys 173:103926
- 29. Li L, Cai H, Han H, Jiang Q, Ji H (2020) Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation. Signal Process 166:107231-107245
- 30. Li Z, Gao J, Wang Z (2020) A time-synchroextracting transform for the time-frequency analysis of seismic data. IEEE Geosci Remote Sens Lett 17:864-868
- 31. Liu W, Duan Z (2020) Seismic signal denoising using f - x variational mode decomposition. IEEE Geosci Remote Sens Lett 17:1313-1317
- 32. Liu G, Chen X, Du J, Song J (2011) Seismic noise attenuation using nonstationary polynomial fitting. Appl Geophys 8:18-26
- 33. Liu W, Liu Y, Li S, Chen Y (2023) A review of variational mode decomposition in seismic data analysis. Surv Geophys 44:323-355
- 34. Long L, Wen X, Lin Y (2021) Denoising of seismic signals based on empirical mode decomposition-wavelet thresholding. J Vib Control 27:311-322
- 35. Nadakuditi R (2014) OptShrink: an algorithm for improved low-rank signal matrix denoising by optimal, data-driven singular value shrinkage. IEEE Trans Inf Theory 60:3002-3018
- 36. Oboue Y, Chen Y (2021) Enhanced low-rank matrix estimation for simultaneous denoising and reconstruction of 5D seismic data. Geophysics 86:V459-V470
- 37. Oropeza V, Sacchi M, Wu HT (2011) Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 76:V25-V32
- 38. Sacchi M (2009) Fx singular spectrum analysis. Presented at the GeoConvention
- 39. Sheu Y, Hsu L, Chou P, Wu H (2017) Entropy-based time-varying window width selection for nonlinear-type time-frequency analysis. Int J Data Sci Anal 3:231-245
- 40. Siahsar MAN, Gholtashi S, Kahoo AR, Marvi H, Ahmadifard A (2016) Sparse time-frequency representation for seismic noise reduction using low-rank and sparse decomposition. Geophysics 81:V117-V124
- 41. Sinha S, Routh PS, Anno P, Castagna JP (2005) Spectral decomposition of seismic data with continuous wavelet transform. Geophysics 70:P19-P25
- 42. Stankovic L (2001) A measure of some time-frequency distributions concentration. Signal Process 81:621-631
- 43. Sun X, Li Y (2020) Denoising of desert seismic signal based on synchrosqueezing transform and adaboost algorithm. Acta Geophys 68:403-412
- 44. Torres ME, Colominas MA, Schlotthauer G, Flandrin P (2011) A complete ensemble empirical mode decomposition with adaptive noise. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 4144-4147
- 45. Trad D, Ulrych T, Sacchi M (2002) Accurate interpolation with high resolution time variant Radon transforms. Geophysics 67:644-656
- 46. Trickett S (2008) F-xy Cadzow noise suppression: SEG, expanded abstracts. 78th Annual international meeting, pp 2586-2590
- 47. Wang Y (1999) Random noise attenuation using forward-backward linear prediction. J Seism Explor 8:133-142
- 48. Wang B, Wu R, Chen X, Li J (2015) Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform. Geophys J Int 201:1180-1192
- 49. Wang H, Chen W, Huang W, Zu S, Liu X, Yang L, Chen Y (2021) Nonstationary predictive filtering for seismic random noise sup-pression—a tutorial. Geophysics 86:1MJ-WA152
- 50. Wang Q, Li Y, Chen S, Tang B (2022) Matching demodulation synchrosqueezing s transform and its application in seismic time-frequency analysis. IEEE Geosci Remote Sens Lett 19:7501505
- 51. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1-41
- 52. Wu G, Liu G, Wang J, Fan P (2022) Seismic random noise denoising using mini-batch multivariate variational mode decomposition. Comput Intell Neurosci 2022:2132732
- 53. Yang H, Long Y, Lin J, Zhang F, Chen Z (2017) A seismic interpolation and denoising method with curvelet transform matching filter. Acta Geophys 65:1029-1042
- 54. Yang W, Wang W, Li G, Wei X, Wang W, Chen Y (2020) Nonstation-ary signal inversion based on shaping regularization for random noise attenuation. Appl Geophys 17:432-442
- 55. Yao X, Zhou Q, Wang C, Hu J, Liu P (2021) An adaptive seismic signal denoising method based on variational mode decomposition. Measurement 177:109277
- 56. Yu S, Ma J (2018) Complex variational mode decomposition for slop-preserving denoising. IEEE Trans Geosci Remote Sens 56:586-597
- 57. Yu S, Ma J, Wang W (2019) Deep learning for denoising. Geophysics 84:1ND-Z34
- 58. Yuan S, Wang S, Luo C, Wang T (2018) Inversion-based 3-D seismic denoising for exploring spatial edges and spatio-temporal signal redundancy. IEEE Geosci Remote Sens Lett 15:1682-1686
- 59. Zhang X, Chen Y, Jia R, Lu X (2022) Two-dimensional variational mode decomposition for seismic record denoising. J Geophys Eng 19:433-444
- 60. Zhang Z, Ye Y, Luo B, Chen G, Wu M (2022) Investigation of micro-seismic signal denoising using an improved wavelet adaptive thresholding method. Sci Rep 12:22186
- 61. Zheng J, Lu J, Jiang T, Liang Z (2017) Microseismic event denoising via adaptive directional vector median filters. Acta Geophys 65:47-54
- 62. Zhong T, Li Y, Wu N, Nie P, Yang B (2015) Statistical analysis of background noise in seismic prospecting. Geophys Prospect 63:1161-1174
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f98ea5e-3dce-46e9-b00a-844c5eca8161