Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The policy of sustainable development seeks to improve energy efficiency of industrial equipment. Efforts to improve energy efficiency also apply to the paint shops, where the recovery of waste heat is sought. The main source of a large amount of low-temperature waste heat in the paint shop is the spray booth. The second place where a large amount of low temperature waste heat is released is the room where the compressed air is prepared. Low energy efficiency of air compressors requires a large electric power supply. As a result, the emitted large heat fluxes become waste energy of the technological process. Heat is equivalent to up to 93% of the electric power supplied in the air compression process. There are solutions for recovering heat from compressors coming from the oil cooling water, but then the waste heat from the cooling of the compressed air and from the electric motor is released into air in the room. A method for recovering low-temperature waste heat from the air preparation room by means of an air-source heat pump has been proposed. An energy balance of the air compression and dehumidification process for the paint shop was made. A Matlab’s built-in numerical model includes air compressor and dehumidifier, heat recovery and accumulation for the purposes of use in the spray booth. A simulation experiment was carried out on the effectiveness of heat recovery from the air preparation room. The use of combined energy management in paint shops was proposed.
Czasopismo
Rocznik
Tom
Strony
229--241
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
- Maritime University of Szczecin, Faculty of Maritime Engineering, Wały Chrobrego 1-2, 70-500 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Maritime Technology and Transport, Piastów 41, 71-065 Szczecin, Poland
Bibliografia
- [1] Balcerzak P., Mroziński A.: Analysis of the efffectiveness of heat recovery system from air compressors, chemical engineering and equaipment. Inż. Ap. Chem. 51(2012), 3, 68–69 (in Polish).
- [2] Brückner S., Liu S., Miró L., Radspieler M., Cabeza L.F., Lävemann E.: Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies. Appl. Energ. 151(2015), 157–16.
- [3] Dindorf R.: Estimating potential energy savings in compressed air systems. Procedia Engineer. 39(2012), 204–211.
- [4] Chang D.-S., Cheng K.-P., Wang R.: Developing low temperature recovery technology of waste heat in automobile factory. Energy Sci. Eng. 6 (2018), 5, 460–474.
- [5] Goodarzia G., Dehghani S., Akbarzadeh A., Date A.: Energy saving opportunities in air drying process in high-pressure compressors. Energy Proced. 110(2017), 428–433.
- [6] Grzebielec A., Rusowicz A., Szela¸gowski A.: Air purification in industrial plants producing automotive rubber components in terms of energy efficiency. Open Eng. 7( 2017), 1, 106–114.
- [7] Huang F., Zheng J., Baleynaud J.M., Lu J.: Heat recovery potentials and technologies in industrial zones. J. Energy Inst. 90(2017), 6, 951–961.
- [8] Jouhara H., Khordehgah N., Almahmoud S., Delpech B., Chauhan A., Tassou S.A.: Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog. 6(2018), 268–289.
- [9] Mikielewicz D., Mikielewicz J.: On the efficient use of a lowtemperature heat source by the organic Rankine cycle. Arch. Thermodyn. 34(2013), 3, 61–73, DOI:10.2478/aoter-2013-0015.
- [10] Miró L., Brueckner S., McKenna R., Cabeza L.F.: Methodologies to estimate industrial waste heat potential by transferring key figures: A case study for Spain. Appl. Energ. 169 (2016) 866–873.
- [11] Mousavi S., Kara S., Kornfeld B.: Energy efficiency of compressed air systems. Procedia CIRP 15(2014), 313–318.
- [12] Murgia S., Valenti G., Colletta D., Costanzoa I., Contaldi G.: Experimental investigation into an ORC-based low-grade energy recovery system equipped with sliding-vane expander using hot oil from an air compressor as thermal source. Energy Proced. 129(2017), 339–346.
- [13] Muszyński T., KoziełS.M.: Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator. Arch. Thermodyn. 37(2016), 3, 45–62, DOI: 10.1515/aoter-2016-0019.
- [14] Nikończuk P.: Study of heat recovery in spray booths. Met. Finish. 111(2013), 6, 37–39.
- [15] Nikończuk P.: Preliminary analysis of heat recovery efficiency decrease in paint spray booths. T. I. Met. Finish. 92(2014), 5, 235–237.
- [16] Nikończuk P.; Zakrzewski B.: The spray booth with the heat recovery. European Patent Office, Patent EP 3117906, 2017-01-18.
- [17] Nikończuk P., Zakrzewski B.: Device for exchanging air with heat recovery, especially in spray booth. European Patent Office, Patent EP2684613A1, 2014-01-15.
- [18] Nikończuk P.: Selected Problems of the Spray Booth Design and Operation. Wydawn. Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie, Szczecin 2018 (in Polish).
- [19] Panayiotou G.P., Bianchi G., Georgiou G., Aresti L., Argyrou M., Agathokleous R, Tsamos K.M., Tassou S.A., Florides G. Kalogirou S., Christodoulides P.: Preliminary assessment of waste heat potential in major European industries. Energy Proced. 123(2017), 335–345.
- [20] Papapetrou M., Kosmadaki G., Cipollina A., La Commare U., Micale G.: Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country: Appl. Therm. Eng. 138(2018). 207–216.
- [21] Stijepovic M.Z., Linke P.: Optimal waste heat recovery and reuse in industrial zones. Energy 36(2011), 4019–4031.
- [22] Taheri K., Gadow R.: Industrial compressed air system analysis: Exergy and thermoeconomic analysis. CIRP J. Manuf. Sci. Technol. 18(2017), 10–17.
- [23] Terrell R.E.: Improving compressed air system efficiency – Know what you really need. Energ. Eng. 96(1999), 1, 7–15.
- [24] Wajs J., Mikielewicz D., Fornalik-Wajs E., Bajor M.: Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources. Arch. Thermodyn. 36(2015), 4, 49–64, DOI: 10.1515/aoter-2015-0032.
- [25] Zakrzewski B., Złoczowska E., Tuchowski W.: Air source heat pumps’ efficency. Chłodnictwo 48(2013), 4, 14–20 (in Polish).
- [26] https://www.romerpp.pl/lang-pl/products/46_104/kompresory_osuszacze.html (accessed 20 October 2019).
- [27] https://www.mathworks.com/products/matlab.html?s-tid=hp-products-matlab (accessed 20 November 2018)
- [28] https://www.mathworks.com/products/simulink.html?s-tid=hp-products-simulink (accessed 20 November 2018)
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f952fb5-2472-417c-a84b-ec9f6d992c2e