Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Rough Set Theory Workshop (RST’2015); (6; 29-06-2015; University of Warsaw )
Języki publikacji
Abstrakty
We introduce and study new generalizations of some rough set tools. Namely, the extended core, the generalized discernibility function, the discernibility space and the maximum partitioner. All these concepts where firstly introduced during the application of rough set theory to graphs, here we show that they have an interesting and useful interpretation also in the general setting. Indeed, among other results, we prove that reducts can be computed in incremental polynomial time, we give some conditions in order that a partition coincides with an indiscernibility partition of a given information table and we give the conditions such that a discernibility matrix corresponds to an information table.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
207--227
Opis fizyczny
Bibliogr. 20 poz., tab.
Twórcy
autor
- Department of Mathematics and Informatics, University of Calabria, Cubo 30B, 87036 Arcavacata di Rende (CS), Italy
autor
- Department of Informatics, Systems and Communication, Università di Milano - Bicocca, Viale Sarca 336/14, 20126 Milano, Italy
autor
- Department of Mathematics and Informatics, University of Calabria, Cubo 30B, 87036 Arcavacata di Rende (CS), Italy
autor
- Department of Mathematics and Informatics, University of Calabria, Cubo 30B, 87036 Arcavacata di Rende (CS), Italy
Bibliografia
- [1] Chiaselotti G, Ciucci D, Gentile T. Simple Undirected Graphs as Formal Contexts. In: Baixeries J, Sacarea C, Ojeda-Aciego M, editors. Proc. ICFCA 2015. vol. LNCS 9113 of Lecture Notes in Computer Science. Springer; 2015. p. 287–302. doi: 10.1007/978-3-319-19545-2_18.
- [2] Chiaselotti G, Ciucci D, Gentile T. Simple Graphs in Granular Computing. Information Science. 2016; 340(C):279–304. doi: 10.1016/j.ins.2015.12.042.
- [3] Chiaselotti G, Ciucci D, Gentile T, Infusino F. Rough Set Theory Applied to Simple Undirected Graphs. In: Ciucci D, Wang G, Mitra S, Wu W, editors. Proc. RSKT 2015. vol. LNCS 9436 of Lecture Notes in Computer Science. Springer; 2015. p. 423–434. doi: 10.1007/978-3-319-25754-9_37.
- [4] Pawlak Z. Rough Sets. Theoretical Aspects of Reasoning about Data. Dordrecht: Kluwer; 1991. doi: 10.1007/978-94-011-3534-4.
- [5] Lee TT. An Information-Theoretic Analysis of Relational Databases - part I: Data Dependencies and Metric. IEEE Transactions on Software Engineering. 1987;SE-13:1049–1061. doi: 10.1109/TSE. 1987.232848.
- [6] Yao Y. A Partition Model of Granular Computing. Transactions on Rough Sets I. 3100 LNCS. 2004:232–253. doi: 10.1007/978-3-540-27794-1_11.
- [7] Yao J, Ciucci D, Zhang Y. Generalized Rough Sets. In: Kacprzyk J, Pedrycz W, editors. Handbook of Computational Intelligence. Springer; 2015. p. 413–424. doi: 10.1007/978-3-662-43505-2_25.
- [8] Cattaneo G. Generalized rough sets (preclusivity fuzzy-intuitionistic BZ lattices). Studia Logica. 1997; 58(1):47–77. doi: 10.1023/A:1004939914902.
- [9] Chiaselotti G, Ciucci D, Gentile T, Infusino F. Preclusivity and Simple Graphs. In: Yao Y, Hu Q, Yu H, Grzymala-Busse JW, editors. Proc. RSFDGrC 2015. vol. LNCS 9437 of Lecture Notes in Computer Science. Springer; 2015. p. 127–137. doi: 10.13140/RG.2.1.3102.1929.
- [10] Chiaselotti G, Ciucci D, Gentile T, Infusino F. Preclusivity and Simple Graphs: The n-cycle and n-path Cases. In: Yao Y, Hu Q, Yu H, Grzymala-Busse JW, editors. Proc. RSFDGrC 2015. vol. LNCS 9437 of Lecture Notes in Computer Science. Springer; 2015. p. 138–148. doi: 10.13140/RG.2.1.4138.4809.
- [11] Berge C. Hypergraphs: Combinatorics of Finite Sets. Amsterdam: Elsevier; 1984. ISBN - 10:0444874895, 13: 978-0444874894.
- [12] Cattaneo G, Chiaselotti G, Ciucci D, Gentile T. On the connection of Hypergraph Theory with Formal Concept Analysis and Rough Set Theory. Information Sciences. 2016;330:342–357. doi: 10.1016/j.ins.2015.09.054.
- [13] Eiter T, Gottlob G. Identifying the Minimal Transversals of a Hypergraph and Related Problems. SIAM J COMPUT. 1995;24:1278–1304. doi:10.1137/S0097539793250299.
- [14] Eiter T, Gottlob G. Hypergraph Transversal Computation and Related Problems in Logic and AI. In: Flesca S, Greco S, Leone N, Ianni G, editors. Logics in Artificial Intelligence, European Conference, JELIA 2002, Cosenza, Italy, September, 23-26, Proceedings. vol. LNCS 2424 of Lecture Notes in Computer Science. Springer; 2002. p. 549–564. doi: 10.1007/3-540-45757-7_53.
- [15] Gyàrfàs A, Lehel J. Hypergraph families with bounded edge cover or transversal number. Combinatorica. 1983;3:351–358.
- [16] Skowron A, Rauszer C. The Discernibility Functions Matrices and Functions in Information Systems. In: Slowinski R, editor. Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory. Kluwer Academic Publishers; 1992. p. 331–362. doi: 10.1007/978-94-015-7975-9_21.
- [17] Fredman ML, Khachiyan L. On the Complexity of Dualization of Monotone Disjunctive Normal Forms. J Algorithms. 1996;21(3):618–628. doi:10.1006/jagm.1996.0062.
- [18] Bisi C, Chiaselotti G, Marino G, Oliverio P. A Natural Extension of the Young Partition Lattice. Advances in Geometry. 2015;3(15):263–280. doi: 10.1515/advgeom-2015-0017.
- [19] Qi J, Wei L, Yao Y. Three-Way Formal Concept Analysis. In: Miao D, Pedrycz W, Slezak D, Peters G, Hu Q, Wang R, editors. RSKT2014 Proceedings. vol. LNCS 8818 of LNCS; 2014. p. 732–741. doi: 10.1007/978-3-319-11740-9_67.
- [20] Yao Y, Hu Q, Yu H, Grzymala-Busse JW, editors. Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2015, Proceedings. vol. LNCS 9437 of Lecture Notes in Computer Science. Springer; 2015. doi: 10.1007/978-3-319-25783-9.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f812783-f870-4795-8763-1d1586ca55d3