Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We explore semibounded expansions of arbitrary ordered groups; namely, expansions that do not define a field on the whole universe. We show that if R=⟨R,<,+,…⟩ is a semibounded o-minimal structure and P⊆R is a set satisfying certain tameness conditions, then ⟨R,P⟩ remains semibounded. Examples include the cases when R=⟨R,<,+,(x↦λx)λ∈R,⋅↾[0,1]2⟩, and P=2Z or P is an iteration sequence. As an application, we show that smooth functions definable in such ⟨R,P⟩ are definable in R.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
97--114
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
autor
- Department of Mathematics, University of Haifa, Haifa, Israel
Bibliografia
- [1] O. Belegradek, Semi-bounded relations in ordered modules, J. Symbolic Logic 69 (2004), 499-517.
- [2] J. Bochnak, M. Coste and M. F. Roy, Real Algebraic Geometry, Springer, 1998.
- [3] F. Delon, Q muni de l’arithmétique faible de Penzin est décidable, Proc. Amer. Math.Soc. 125 (1997), 2711-2717.
- [4] L. van den Dries, The field of reals with a predicate for the power of two, Manuscripta Math. 54 (1985), 187-195.
- [5] L. van den Dries, Dense pairs of o-minimal structures, Fund. Math. 157 (1988), 61-78.
- [6] L. van den Dries, Tame Topology and o-Minimal Structures, Cambridge Univ. Press, Cambridge, 1998.
- [7] M. Edmundo, Structure theorems for o-minimal expansions of groups, Ann. Pure Appl. Logic 102 (2000), 159-181.
- [8] P. Eleftheriou, Local analysis for semi-bounded groups, Fund. Math. 216 (2012), 223-258.
- [9] P. Eleftheriou, Characterizing o-minimal groups in tame expansions of o-minimal structures, J. Inst. Math. Jussieu 20 (2021), 699-724.
- [10] P. Eleftheriou, M. Edmundo and L. Prelli, Coverings by open cells, Arch. Math. Logic 53 (2014), 307-325.
- [11] P. Eleftheriou and A. Savatovsky, Expansions of the real field which introduce no new smooth function, Ann. Pure Appl. Logic 171 (2020), art. 102808, 14 pp.
- [12] H. Friedman and C. Miller, Expansions of o-minimal structures by sparse sets, Fund. Math. 167 (2001), 55-64.
- [13] P. Hieronymi, Expansions of the ordered additive group of real numbers by two discrete subgroups, J. Symbolic Logic 81 (2016), 1007-1027.
- [14] P. Hieronymi and E. Walsberg, A tetrachotomy for expansions of the real ordered additive group, Selecta Math. 27 (2021), art. 54, 36 pp.
- [15] M. Khani, The field of reals with a predicate for the real algebraic numbers and a predicate for the integer powers of two, Arch. Math. Logic 54 (2015), 885-898.
- [16] J. Loveys and Y. Peterzil, Linear o-minimal structures, Israel J. Math. 81 (1993), 1-30.
- [17] D. Marker, Y. Peterzil and A. Pillay, Additive reducts of real closed fields, J. Symbolic Logic 57 (1992), 109-117.
- [18] C. Miller, Tameness in expansions of the real field, in: Logic Colloquium ’01, Lecture Notes in Logic 20, Association of Symbolic Logic, Urbana, IL, 2005, 281-316.
- [19] C. Miller and P. Speissegger, Expansions of the real line by open sets: o-minimality and open cores, Fund. Math. 162 (1999), 193-208.
- [20] C. Miller and J. Tyne, Expansions of o-minimal structures by iteration sequences, Notre Dame J. Formal Logic 47 (2006), 93-99.
- [21] Y. Peterzil, A structure theorem for semibounded sets in the reals, J. Symbolic Logic 57 (1992), 779-794.
- [22] Y. Peterzil, Returning to semi-bounded sets, J. Symbolic Logic 74 (2009), 597-617.
- [23] A. Pillay, P. Scowcroft and C. Steinhorn, Between groups and rings, Rocky Mountain J. Math. 19 (1989), 871-886.
- [24] Y. Peterzil and S. Starchenko, A trichotomy theorem for o-minimal structures, Proc. London Math. Soc. 77 (1998), 481-523.
- [25] A. Robinson, Solution of a problem of Tarski, Fund. Math. 47 (1959), 79-204.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f811a51-5f75-482f-b663-569aab0154b7