PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predictive models for estimation of labyrinth weir aeration efficiency

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the study is to estimate the aeration efficiency (E20) of Labyrinth weir using artificial intelligent (AI)-based models. Design/methodology/approach: The aeration efficiency (E20) was collected by using the nine models of Labyrinth weir with different shapes and dimensions. A total of 180 observations were used out of which 126 used to train the AI-based models and the remaining used to test the model. This observation consists of input variables such as Fraud number (Fr), Reynolds number (Re), numbers of keys (N), the ratio of head to the width of the channel (H/W), the ratio of crest length to width of the channel (L/W), the ratio of drop height to width of the channel (D/W) and shape factor (SF) and E20 as the output variables. The AI-based models used were Fuzzy Logic, multi-linear regression (MLR), adaptive neuro fuzzy interface system (ANFIS), and artificial neural network (ANN). Findings: The main findings of this investigation are that ANN is the best AI-based model that can estimate the E20 accurately than MLR, ANFIS, and Fuzzy Logic. Sensitivity analysis depicts that drop height at labyrinth weir is the essential factors for the estimation of E20; further, parametric studies have also been performed. Research limitations/implications: The proposed AI-based models can be used in the estimation of E20 with different shapes of labyrinth weir but still it needs improvement for the different dimensions. Practical implications: The best AI-based model can be used to calculate the E20 with the different values of input variables. Originality/value: There are no such AI-based models such as ANN, ANFIS, and Fuzzy Logic, available in the literature which can estimate the values of E20 accurately.
Rocznik
Strony
18--32
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Civil Engineering Department, National Institute of Technology, Kurukshetra, India
autor
  • Civil Engineering Department, Panipat Institute of Engineering and technology, Samalkha, India
autor
  • Civil Engineering Department, Shoolini University, Solan, India
Bibliografia
  • [1] A. Baylar, T. Bagatur, Study of aeration efficiency at weirs, Turkish Journal of Engineering and Environmental Sciences 24/4 (2000) 255-264.
  • [2] A. Baylar, D. Hanbay, M. Batan, Application of least square support vector machines in the prediction of aeration performance of plunging overfall jets from weirs, Expert Systems with Applications 36/4 (2009) 8368-8374. DOI: https://doi.org/10.1016/j.eswa.2008.10.061
  • [3] J. Cassidy, C.A. Gardner, R.T. Peacock, Labyrinth crest spillway planning, design and construction. Proceedings of the International Conference on Hydraulic Aspects of Floods and Flood Control, City University, London, 1983.
  • [4] N. Hay, G. Taylor, Performance and design of labyrinth weirs, Journal of the Hydraulics Division 96/11 (1970) 2337-2357.
  • [5] G. Taylor, The performance of labyrinth weirs, PhD Thesis, University of Nottingham, 1968.
  • [6] A.L.H. Gameson, Weirs and aeration of rivers, Journal of the Institution of Water Engineers 11/6 (1957) 477-490.
  • [7] G.T.N. Van der Kroon, A.H. Schram, Weir aeration - part I: Single free fall, H2O 22 (1969) 528-537.
  • [8] H. Nakasone, Study of aeration at weirs and cascades, Journal of Environmental Engineering 113/1 (1987) 64-81. DOI: https://doi.org/10.1061/(ASCE)0733-9372(1987)113:1(64)
  • [9] S.T. Avery, P. Novak, Oxygen transfer at hydraulic structures, Journal of the Hydraulics Division 104/11 (1978) 1521-1540.
  • [10] J.S. Gulliver, A.J. Rindels, Measurement of air-water oxygen transfer at hydraulic structures, Journal of Hydraulic Engineering 119/3 (1993) 327-349. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1993)119:3(327)
  • [11] S.C. Wilhelms, J.S. Gulliver, K. Parkhill, Reaeration at low-head hydraulic structures, Report No. WES/TR/W-93-2 prepared for Headquarters, U.S. Army Corps of Engineers, 1993.
  • [12] J.R. Thene, Gas transfer at weirs using the hydrocarbon gas tracer method with headspace analysis, MS Thesis, University of Minnesota, Minneapolis, 1988.
  • [13] P.R. Wormleaton, E. Soufiani, Aeration performance of triangular planform labyrinth weirs, Journal of Environmental Engineering 124/8 (1998) 709-719. DOI: https://doi.org/10.1061/(ASCE)0733-9372(1998)124:8(709)
  • [14] P.R. Wormleaton, C.C. Tsang, Aeration performance of rectangular planform labyrinth weirs, Journal of Environmental Engineering 126/5 (2000) 456-465. DOI: https://doi.org/10.1061/(ASCE)0733-9372(2000)126:5(456)
  • [15] B. Singh, P. Sihag, K. Singh, Modelling of impact of water quality on infiltration rate of soil by random forest regression, Modeling Earth Systems and Environment 3/3 (2017) 999-1004. DOI: https://doi.org/10.1007/s40808-017-0347-3
  • [16] P. Sihag, Prediction of unsaturated hydraulic conductivity using fuzzy logic and artificial neural network, Modeling Earth Systems and Environment 4/1 (2018) 189-198. DOI: https://doi.org/10.1007/s40808-018-0434-0
  • [17] P. Sihag, N.K. Tiwari, S. Ranjan, Modelling of infiltration of sandy soil using gaussian process regression, Modeling Earth Systems and Environment 3/3 (2017) 1091-1100. DOI: https://doi.org/10.1007/s40808-017-0357-1
  • [18] P. Sihag, P. Jain, M. Kumar, Modelling of impact of water quality on recharging rate of storm water filter system using various kernel function based regression, Modeling Earth Systems and Environment 4/1 (2018) 61-68. DOI: https://doi.org/10.1007/s40808-017-0410-0
  • [19] A. Mansour-Bahmani, A.H. Haghiabi, Z. Shamsi, A. Parsaie, Predictive modeling the discharge of urban wastewater using artificial intelligent models (case study: Kerman city), Modeling Earth Systems and Environment (2020). DOI: https://doi.org/10.1007/s40808-020-00900-z
  • [20] B. Singh, P. Sihag, S. Deswal, Modelling of the impact of water quality on the infiltration rate of the soil, Applied Water Science 9/1 (2019) 15. DOI: https://doi.org/10.1007/s13201-019-0892-1
  • [21] B. Singh, Prediction of the sodium absorption ratio using data-driven models: a case study in Iran, Geology, Ecology, and Landscapes 4/1 (2020) 1-10. DOI: https://doi.org/10.1080/24749508.2019.1568129
  • [22] B. Singh, P. Sihag, K. Singh, S. Kumar, Estimation of trapping efficiency of a vortex tube silt ejector, International Journal of River Basin Management (2018). DOI: https://doi.org/10.1080/15715124.2018.1476367
  • [23] P. Sihag, B. Singh, A. Sepah Vand, V. Mehdipour, Modeling the infiltration process with soft computing techniques, ISH Journal of Hydraulic Engineering 26/2 (2020) 138-152. DOI: https://doi.org/10.1080/09715010.2018.1464408
  • [24] S. Arora, B. Singh, B. Bhardwaj, Strength performance of recycled aggregate concretes containing mineral admixtures and their performance prediction through various modeling techniques, Journal of Building Engineering 24 (2019) 100741. DOI: https://doi.org/10.1016/j.jobe.2019.100741
  • [25] A. Sepahvand, B. Singh, P. Sihag, A. Nazari Samani, H. Ahmadi, Nia Fiz, S. Assessment of the various soft computing techniques to predict sodium absorption ratio (SAR), ISH Journal of Hydraulic Engineering (2019). DOI: https://doi.org/10.1080/09715010.2019.1595185
  • [26] J.S. Gulliver, J.R. Thene, A.J. Rindels, Indexing gas transfer in self-aerated flows, Journal of Environmental Engineering 116/3 (1990) 503-523. DOI: https://doi.org/10.1061/(ASCE)0733-9372(1990)116:3(503)
  • [27] C.C. Tsang, Hydraulic and aeration performance of labyrinth weirs, PhD Thesis, University of London, London, 1987.
  • [28] N.K. Tiwari, P. Sihag, Prediction of oxygen transfer at modified Parshall flumes using regression models, ISH Journal of Hydraulic Engineering 26/2 (2020) 209-220. DOI: https://doi.org/10.1080/09715010.2018.1473058
  • [29] M. Kumar, S. Ranjan, N.K. Tiwari, Oxygen transfer study and modeling of plunging hollow jets, Applied Water Science 8/5 (2018) 121. DOI: https://doi.org/10.1007/s13201-018-0740-8
  • [30] B. Singh, P. Sihag, A. Parsaie, A. Angelaki, Comparative analysis of artificial intelligence techniques for the prediction of infiltration process, Geology, Ecology, and Landscapes (2020). DOI: https://doi.org/10.1080/24749508.2020.1833641
  • [31] A. Sepahvand, B. Singh, M. Ghobadi, P. Sihag, Estimation of infiltration rate using data-driven models, Arabian Journal of Geosciences 14/1 (2021) 42. DOI: https://doi.org/10.1007/s12517-020-06245-2
  • [32] P. Sihag, M. Kumar, B. Singh, Assessment of infiltration models developed using soft computing techniques, Geology, Ecology, and Landscapes (2020). DOI: https://doi.org/10.1080/24749508.2020.1720475
  • [33] L.A. Zadeh, Information and control, Fuzzy Sets 8/3 (1965) 338-353.
  • [34] S. Haykin, Neural networks: a comprehensive foundation, Prentice Hall PTR, 1994.
  • [35] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man, and Cybernetics SMC-15/1 (1985) 116-132. DOI: https://doi.org/10.1109/TSMC.1985.6313399
  • [36] T. Kavzoglu, P.M. Mather, The use of back propagating artificial neural networks in land cover classification, International Journal of Remote Sensing 24/23 (2003) 4907-4938. DOI: https://doi.org/10.1080/0143116031000114851
  • [37] B. Singh, P. Sihag, S.M. Pandhiani, S. Debnath, S. Gautam, Estimation of permeability of soil using easy measured soil parameters: assessing the artificial intelligence-based models, ISH Journal of Hydraulic Engineering (2019). DOI: https://doi.org/10.1080/09715010.2019.1574615
  • [38] P. Sihag, N.K. Tiwari, S. Ranjan, Prediction of cumulative infiltration of sandy soil using random forest approach, Journal of Applied Water Engineering and Research 7/2 (2019) 118-142. DOI: https://doi.org/10.1080/23249676.2018.1497557
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f80878f-9737-4897-8712-c1c81a453c88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.