PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model numeryczny procesu sorpcji wymiennej CO2/CH4

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Numerical model of CO2/CH4 exchange sorption process
Języki publikacji
PL
Abstrakty
PL
Konieczność redukcji CO2 w atmosferze wiąże się z poszukiwaniem skutecznych metod bezpiecznego magazynowania tego gazu. Metoda ECBM (enhanced coal bed methane recovery) polegająca na zatłaczaniu CO2 do nie eksploatowanych pokładów węgla pozwala dodatkowo pozyskiwać CH4. Metoda ECBM bazuje na zjawisku sorpcji wymiennej. W niniejszej pracy przedstawiono model numeryczny opisujący proces sorpcji wymiennej CO2/CH4 zachodzącej w brykiecie węglowym. Model ten został oparty na szeregu hipotez. Założono, że sorpcja wymienna zachodzi na powierzchni pomiędzy ściankami ziaren a makroporami sorbentu. Postawiono hipotezy dotyczące kinetyki procesu sorpcji wymiennej oraz wpływu zaawansowania tego procesu na filtracyjny transport mieszaniny gazów poprzez sieć makroporów. Prezentowany model sorpcji wymiennej stanowi układ równań rozwiązywanych numerycznie. Symulacje przeprowadzone za pomocą zbudowanego modelu porównano z wynikami uzyskanymi z przeprowadzonych eksperymentów laboratoryjnych sorpcji wymiennej CO2/CH4 zachodzącej w brykiecie węglowym.
EN
The necessity to reduce the CO2 emissions to atmosphere has prompted searching for some effective and secure CO2 storage methods. The ECBM (Enhanced Coal Bed Methane Recovery), consisting in CO2 injection to unmined colbeds, allows also for the recovery of CH4. Underlying the ECBM method is the exchange sorption process. A numerical model is developed governing the process of CO2/CH4 exchange sorption in a coal briquette. The model is based on several hypotheses: it is assumed that the exchange sorption takes place on the interface between the grain walls and macropores in the sorbent substance. Other hypotheses are put forward, relating to the kinetics of the exchange sorption, as well as the influence of its consecutive stages on the seepage of a gas mixture through the network of macropores. The exchange sorption model involves a system of equations to be solved numerically. Simulation data are compared with the results of laboratory experiments involving the investigations of CO2/CH4 exchange sorption in a coal briquette.
Rocznik
Strony
3--14
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Instytut Mechaniki Górotworu PAN; ul. Reymonta 27, 30-059 Kraków
autor
  • Instytut Mechaniki Górotworu PAN; ul. Reymonta 27, 30-059 Kraków
  • Instytut Mechaniki Górotworu PAN; ul. Reymonta 27, 30-059 Kraków
Bibliografia
  • Bhowmik S., Dutta P., 2011: Investigation into the methane displacement behavior by cyclic, pure carbon dioxide injection in dry, powdered, bituminous indian coals. Energy & Fuels 25 (6), 2730-2740.
  • Ceglarska-Stefańska G., Zarębska K., 2002: The competitive adsorption of CO2 and CH4 with regard to the release of methane from coal. Fuel Processing Technology 77-78, 423-429.
  • Cui X., Bustin R.M., Dipple G., 2003: Selective transport of CO2, CH4 and N2 in coals: insights from modeling of experimental gas adsorption data. Fuel 83, 293-303.
  • Dutka B., Kudasik M., Pokryszka Z., Skoczylas N., Topolnicki J., Wierzbicki M., 2013: Balance of CO2/CH4 exchange sorption in a coal briquette. Fuel Processing Technology 106, 95-101.
  • Dutka B., Kudasik M., Topolnicki J., 2012: Pore pressure changes accompanying exchange sorption of CO2/CH4 in a coal briquette. Fuel Processing Technology 100, 30-34.
  • Hamelinck C.N., Schreurs H., Faaij A.P.C., Ruijg G.J., Jansen D., Pagnier H., van Bergen F., Wolf K.-H.A.A., Barzandji O., Bruining H., 2006: Potential for CO2 sequestration and Enhanced Coalbed Methane production in the Netherlands. Copernicus.
  • Jessen K., Tang G.-Q., Kovscek A.R., 2008: Laboratory and simulation investigation of enhanced coalbed methane recovery by gas injection. Transport in Porous Media 73 (2), 141-159.
  • Kudasik M., Skoczylas N., Sobczyk J., Topolnicki J., 2010: Manostat - an accurate gas pressure regulator, Measurement Science and Technology 21 (8).
  • Liang W., Zhao Y., Wu D., Dusseault M., 2011: Experiments on methane displacement by carbon dioxide in large coal specimens. Rock Mechanics and Rock Engineering 44 (5), 579-589.
  • Lutynski M.A., Battistutta E., Bruining H., Wolf K.A.A., 2011: Discrepancies in the assessment of CO2 storage capacity and methane recovery from coal with selected equations of state. Part II. Reservoir simulation, Physicochemical Problems of Mineral Processing 47, 209-214.
  • Mazumder S., Wolf K.H., 2008: Differential swelling and permeability change of coal in response to CO2 injection for ECBM. International Journal of Coal Geology 74, 123-138.
  • Mazumder S., Wolf K.-H.A.A., van Hemert P., Busch A., 2008: Laboratory experiments on environmental friendly means to improve coalbed methane production by carbon dioxide/flue gas injection. Transport in Porous Media 75, 63-92.
  • Parakh S., 2007: Experimental Investigation of Enhanced Coal Bed Methane Recovery. Report, Department of Petroleum Engineering of Stanford University, July 2007.
  • Pini R., Storti G., Mazzotti M., 2011: A model for enhanced coal bed methane recovery aimed at carbon dioxide storage. Adsorption 17 (5), 889-900.
  • Seto C.J., Jessen K., Multicomponent A., 2009: Two-Phase Flow Model for CO2 Storage and Enhanced Coalbed-Methane Recovery. SPE Journal 14 (1), Society of Petroleum Engineers.
  • Shi J.Q., Durucan S., 2003: A bidisperse pore diffusion model for methane displacement desorption in coal by CO2 injection. Fuel 82 (10), 1219-1229.
  • Shi J.Q., Durucan S., 2008: Modelling of Mixed-Gas Adsorption and Diffusion in Coalbed Reservoirs. SPE Unconventional Reservoirs Conference, 10-12 February 2008, Keystone, Colorado, USA, Society of Petroleum Engineers.
  • Shi J.Q., Mazumder S., Wolf, K.-H.A.A., 2008: Competitive methane desorption by supercritical CO2 injection in coal. Transport in porous media 75, 35-54.
  • Wei X.R., Wang G.X., Massarotto P., Rudolph V., Golding S.D., 2007: Modeling gas displacement kinetics in coal with Maxwell-Stefan diffusion theory. AIChE Journal 53 (12), 3241-3252.
  • Wei X.R., Wang K., Massarotto P., Rudolph V., 2010: Adsorption-induced swelling/shrinkage and permeability of coal under stressed adsorption/desorption conditions. International Journal of Coal Geology 83, 46-54.
  • Wolf K.-H.A.A., Hijman R., Barzandij O., Bruining J., 1999: Laboratory experiments and simulations on the environmentally friendly improvement of coalbed methane production by carbon-dioxide injection. International Proceedings of the 1999 Coalbed Methane Symposium, Tuscaloosa 3-7, (May 1999), 279-290.
  • Wolf K.-H.A.A., Siemons N., Bruining J., 2004: Multiphase flow experiments in order to understand the behavior of (partly) saturated coals as a gas reservoir: examples. Geologica Belgica 7 (3-4), 115-121.
  • Yu H., Yuan J., Guo W., Cheng J., Hu Q., 2008: A preliminary laboratory experiment on coalbed methane displacement with carbon dioxide injection. International Journal of Coal Geology 73 (2), 156-166.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f761be3-abe6-40fc-a2dd-2a2b0449b12f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.