PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and Corrosion Resistance of Aluminium and Copper Composite Coatings Deposited by LPCS Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the study of microstructure and corrosion resistance of composite coatings (Al+Al2O3 and Cu+Al2O3) deposited by Low Pressure Cold Spraying method (LPCS). The atmospheric corrosion resistance was examined by subjecting the samples to cyclic salt spray and Kesternich test chambers, with NaCl and SO2 atmospheres, respectively. The selected tests allowed reflecting the actual working conditions of the coatings. The analysis showed very satisfactory results for copper coatings. After eighteen cycles, with a total time of 432 hours, the samples show little signs of corrosion. Due to their greater susceptibility to chloride ions, aluminium coatings have significant corrosion losses.
Twórcy
autor
  • Wrocław University of Technology, 5 Łukasiewicza Str., 50-371, Wrocław, Poland
  • Wrocław University of Technology, 5 Łukasiewicza Str., 50-371, Wrocław, Poland
  • Wrocław University of Technology, 5 Łukasiewicza Str., 50-371, Wrocław, Poland
  • Wrocław University of Technology, 5 Łukasiewicza Str., 50-371, Wrocław, Poland
autor
  • Wrocław University of Technology, 5 Łukasiewicza Str., 50-371, Wrocław, Poland
Bibliografia
  • [1] V. K. Champagne, The cold spray materials deposition process - Fundamentals and applications, 2007 Woodhead Publishing Limited, Cambridge.
  • [2] A. Papyrin, Cold Spray Technology, 2007 Elsevier, Oxford.
  • [3] R. G. Maev, V. Leshchynsky, Introduction to Low Pressure Gas Dynamic Spray, 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • [4] H. Katanoda, T. Matsuoka, K. Matsuo, J. Therm. Sci. 16 (1), 40-45 (2006).
  • [5] B. Jodoin, P. Richer, G. Bérubé, L. Ajdelsztajn, A. Erdi-Betchi, M. Yandouzi, Surf. Coat. Tech. 201, 7544–7551 (2007).
  • [6] Xian-Jin Ning, Quan-Sheng Wang, Zhuang Ma, and Hyung-Jun Kim, J. Therm. Spray Tech. 19 (6), 1211-1217 (2010).
  • [7] T. Schmidt, F. Gärtner, H. Assadi, H. Kreye, Acta Mater. 54, 729–742 (2006).
  • [8] T. Hussain, D. G. McCartney, P. H. Shipway, D. Zhang, J. Therm. Spray Tech. 18 (3), 364-379 (2009).
  • [9] V. Luzin, K. Spencer, M.-X. Zhang, Acta Mater. 59, 1259–1270 (2011).
  • [10] H. Koivuluoto, J. Lagerbom, M. Kylmalahti, P. Vuoristo, J. Therm. Spray Tech. 17 (5-6), 721-727 (2008).
  • [11] H. Mäkinen, J. Lagerbom, P. Vuoristo, Thermal Spray 2007: Global Coating Solutions: Proceedings of the 2007 International Thermal Spray Technology, Beijng 2007.
  • [12] X.-J. Ning, J.-H. Kim, H.-J. Kim, C. Lee, Appl. Surf. Sci. 255, 3933–3939 (2009).
  • [13] H. Koivuluoto, P. Vuoristo, J. Therm. Spray Tech. 19 (5), 1081–1092 2010.
  • [14] Q. Wang, K. Spencer, N. Birbilis, M.-X. Zhang, Surf. Coat. Tech. 205, 50–56 (2010).
  • [15] K. Spencer, D.M. Fabijanic, M.-X. Zhang, Surf. Coat. Tech. 204, 336–344 (2009).
  • [16] E. Irissou, J.-G. Legoux, B. Arsenault, Ch. Moreau, J. Therm. Spray Tech. 16 (5-6), 661-668 (2007).
  • [17] H. Koivuluoto and P. Vuoristo, J. Therm. Spray Tech. 18 (4), 555–562 (2009).
  • [18] Y. Tao, T. Xiong, C. Sun, L. Kong, X. Cui, T. Li, G.-L., Corros Sci 52, 3191–3197 (2010).
  • [19] Q. Wang, N. Birbilis, M.-X. Zhang, Mater. Lett. 65, 1576–1578 (2011).
  • [20] Davis J. R., Corrosion: Understanding the basics, 2000 ASM International, Materials Park.
  • [21] Patent no. US 7,736,445 B2, Yagi I., Lu D., Yang X., He D., Surface treatment method for solder join, published 12.11.2008.
  • [22] Pourbaix M., Atlas of Electrochemical Equilibria in Aqueous Solutions, 1966 National Association of Corrosion, Pergamon.
  • [23] Lee M. S., Choi H. J., Choi J. W., Kim H. J., Nucl. Eng. Technol. 43(6), 557-566 (2011).
  • [24] Ch. G. Munger, L. D. Vincent, Corrosion protection by protective coatings, 1999 National Association of Corrosion Engineers, Houston.
  • [25] M. G. Fontana, Corrosion engineering, 2005 Tata McGraw-Hill, New York.
  • [26] R. Baboian, Corrosion tests and standarts, Aplication and interpretation 2nd edition, 2005 ASTM International, Baltimore.
  • [27] ASTM B117-11, Standard Practice for Operating Salt Spray (Fog) Apparatus, ASTM International, West Conshohocken, PA (2011).
  • [28] M. Textor, J. Timm, P. Néma, J. Timm, Materialwissenschaft und Werkstofftechnik 26 (6), 318–326 (1995).
  • [29] J. Song, L. Wang, A. Zibart, C. Koch, Metals 2, 450-477 (2012).
  • [30] N. S. Berke, H. E. Townsend, J. Test. Eval. 13 (1), 74-76 (1985).
  • [31] A. Shkodkin, A. Kashirin, O. Klyuev, and T. Buzdygar, J. of Therm. Spray Tech. 15 (3), 382—386 (2006).
  • [32] X.-T. Luo, Y.-J. Li, C.-J. Li, Mater. Lett. 163 (15), 58–60 (2016).
  • [33] S. Kumar G. Bae, K. Kang, S. Yoon, C. Lee, J. Phys. D Appl. Phys. 42, 075305 (2009).
  • [34] T. Hong, M. Nagumo, Corros. Sci. 39 (9), 1665–1672 (1997).
  • [35] A. Shahryari, W. Kamal, S. Omanovic, Mater. Lett. 62 (23), 3906–3909 (2008).
  • [36] H.-R. Wang, B.-R. Hou, J. Wang, Q. Wang, W.-Y. Li, J. Therm. Spray Tech. 17 (5-6), 736–741 (2008).
  • [37] J. Baszkiewicz, M. Kamiński, Korozja materiałów, 2006 Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
  • [38] M. Schutze, Corrosion and environmental degradation. Vol. 2, 2000 Wiley-VCH, Weinheim.
  • [39] E. Otero, J. M. Bastidas, W. Lopez, J. L. G. Fierro, Werkstoffe und Korrosion 45, 387-393 (1994).
  • [40] J. R. Davis, Handbook of thermal spray technology, 2004 ASM International, Materials Park4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f72f326-4e22-4b29-8206-01db765d7e8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.