PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biological and mechanical research of titanium implants covered with bactericidal coating

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Materials used in bone implants should not only be non- -toxic to the surrounding tissues, but also should promote osseointegration and minimize the risk of infection. Infections are a serious problem contributing to implantation failure. They are associated with pain, immobilization, and the necessity of reoperation. In extreme cases, they can lead to significant inflammatory changes in the bones, which, in turn, can lead to amputation and even death. After implantation, the surrounding tissues are damaged. In addition, implants are susceptible to bacterial colonization due to the lack of microcirculation. Therefore, scientists are working on antibacterial coatings to prevent the adhesion of bacteria before tissue regeneration. The paper concerns the biological and mechanical properties of titanium implants with an antibacterial coating. The Ti13Zr13Nb alloy samples were coated with hydroxyapatite (HAp) coatings using the electrophoretic deposition technique (EPD). Subsequently, the surface of the samples was modified with silver, copper, and nickel nanoparticles by the immersion method. Different titanium sample types (i.e. HAp-only and nanometals-enriched coatings) were placed in a bacterial solution for a period of one month. Each sample was examined using scanning electron microscopy (SEM), nanoindentation, nanoscratch, and contact angle tests. The significant amount of dead biofilm on the surface proves the effectiveness of antibacterial activity. The wettability assessment showed that the samples were hydrophilic. The conducted tests of mechanical properties indicate the heterogeneity of the coatings.
Rocznik
Strony
17--22
Opis fizyczny
Bibliogr. 21 poz., wykr., tab., zdj.
Twórcy
  • Institute of Machines and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
  • Institute of Machines and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
Bibliografia
  • [1] Ribeiro M., Monteiro F. J., Ferraz M. P.: Infection of Orthopedic Implants with Emphasis on Bacterial Adhesion Process and Techniques Used in Studying Bacterial-Material Interactions. Biomatter 2 (2012) 176-194.
  • [2] Cendra M. del M., Torrents E.: Pseudomonas Aeruginosa Biofilms and Their Partners in Crime. Biotechnol Adv 49 (2021) 107734.
  • [3] Vickery K.: Special Issue: Microbial Biofilms in Healthcare: Formation, Prevention and Treatment. Materials 12 (2019) 3-5.
  • [4] Bartmanski M., Zielinski A., Majkowska-Marzec B., Strugala G.: Effects of Solution Composition and Electrophoretic Deposition Voltage on Various Properties of Nanohydroxyapatite Coatings on the Ti13Zr13Nb Alloy. Ceramics International 44 (2018) 19236-19246.
  • [5] Surma K., Adach M., Dębowska M., Turlej P.: Projektowanie i analiza obliczeniowa implantu krążka międzykręgowego odcinka szyjnego kręgosłupa przeznczonego do wytwarzania za pomocą technologii przyrostowych. Aktualne problemy biomechaniki 17 (2019) 111-122.
  • [6] Świeczko-Żurek B.: Biomateriały; Wydawnictwo Politechnikii Gdańskiej (2009) 72-97.
  • [7] Jażdżewska M., Kwidzińska D., Seyda W., Frydrych D., Zieliński A.: Mechanical Properties and Residual Stress Measurements of Grade IV Titanium and Ti-6Al-4V and Ti-13Nb-13Zr Titanium Alloys after Laser Treatment. Materials 14 (2021) 1-22.
  • [8] Panda S., Biswas C.K., Paul S.: A Comprehensive Review on the Preparation and Application of Calcium Hydroxyapatite: A Special Focus on Atomic Doping Methods for Bone Tissue Engineering. Ceramics International 47 (2021) 28122-28144.
  • [9] Abdulkareem M.H., Abdalsalam A.H., Bohan A.J.: Influence of Chitosan on the Antibacterial Activity of Composite Coating (PEEK /HAp) Fabricated by Electrophoretic Deposition. Progress in Organic Coatings 130 (2019) 251-259.
  • [10] Lin K., Chang J.: Structure and Properties of Hydroxyapatite for Biomedical Applications. In Hydroxyapatite (Hap) for Biomedical Applications; Woodhead Publishing (2015) 3-19.
  • [11] Bartmański M., Pawłowski Ł., Mielewczyk-Gryń A., et al.: The Influence of Nanometals, Dispersed in the Electrophoretic Nanohydroxyapatite Coatings on the Ti13Zr13Nb Alloy, on Their Morphology and Mechanical Properties. Materials 14 (2021) 1-16.
  • [12] Prasad K., Zhou R., Zhou R., Schuessler D., et al.: Cosmetic Reconstruction in Breast Cancer Patients: Opportunities for Nanocomposite Materials. Acta Biomaterialia 86 (2019) 41-65.
  • [13] Bartmanski M., Cieslik B., Glodowska J., et al.: Electrophoretic Deposition (EPD) of Nanohydroxyapatite - Nanosilver Coatings on Ti13Zr13Nb Alloy. Ceramics International 43 (2017) 11820-11829.
  • [14] Geissel F. J., Platania V., Gogos A., et al.: Antibiofilm Activity of Nanosilver Coatings against Staphylococcus Aureus. Journal of Colloid and Interface Science 608 (2021) 3141-3150.
  • [15] Vijayaraghavan P., Rathi M.A., Almaary K.S., et al.: Preparation and Antibacterial Application of Hydroxyapatite Doped Silver Nanoparticles Derived from Chicken Bone. Journal of King Saud University - Science 34 (2022) 101749.
  • [16] Prabhu S., Poulose E.K.: Silver Nanoparticles: Mechanism of Antimicrobial. Int. Nano Lett. 2 (2012) 32-41.
  • [17] Ghuglot R., Titus W., Agnihotri A.S., Krishnakumar V., et al: Stable Copper Nanoparticles as Potential Antibacterial Agent against Aquaculture Pathogens and Human Fibroblast Cell Viability. Biocatalysis and Agricultural Biotechnology 32 (2021) 101932.
  • [18] Ingle A.P., Duran N., Rai M.: Bioactivity, Mechanism of Action, and Cytotoxicity of Copper-Based Nanoparticles: A Review. Applied Microbiology and Biotechnology 98 (2014) 1001-1009.
  • [19] Ameh T., Sayes C. M.: The Potential Exposure and Hazards of Copper Nanoparticles: A Review. Environmental Toxicology and Pharmacology 71 (2019) 103220.
  • [20] Argueta-Figueroa L., Morales-Luckie R.A., Scougall-Vilchis R.J., Olea-Mejía O.F.: Synthesis, Characterization and Antibacterial Activity of Copper, Nickel and Bimetallic Cu–Ni Nanoparticles for Potential Use in Dental Materials. Progress in Natural Science: Materials International 24 (2014) 321-328.
  • [21] Świeczko-Żurek B.: Method of Assessing Biodegradation of Metallic Implants, Method of Obtaining a Bacterial Solution for Assessing Biodegradation of Metallic Implants and a Bacterial Composition for Assessing Biodegradation of Metallic Implants. Patent No. P 409082, 2015.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f703be6-bad3-4046-9188-1f044f56aa57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.