Identyfikatory
Warianty tytułu
Effect of chemical modification of the coal fly ash onto adsorption of lead(ii) ions in the presence of cadmium(ii) ions in a singleand bi-component system
Języki publikacji
Abstrakty
Celem badań było określenie wpływu modyfikacji chemicznej odpadowego lotnego popiołu węglowego (FA) za pomocą roztworów HNO3, CH3COONH4 (AcNH4), NaOH oraz dietyloditiokarbaminianu sodu (NaDDTC) na adsorpcję jonów ołowiu(II) w obecności jonów kadmu(II) w układzie jedno- i dwuskładnikowym. Analizowano modele izoterm adsorpcji w układzie jednoskładnikowym, m.in.: Freundlicha, Langmuira, Redlicha-Petersona, Jovanoviča, Fumkina- Fowlera-Guggenheima, Fowlera-Guggenheima-Jovanoviča-Freundlicha oraz Halseya, a także w układzie dwuskładnikowym za pomocą rozszerzonego modelu Langmuira, Langmuira- Freundlicha oraz Jaina-Snoeyinka. W testach laboratoryjnych badano równowagę oraz kinetykę adsorpcji. Adsorpcję jonów Pb(II) i Cd(II) w układzie jednoskładnikowym za pomocą FA, FA-NaOH i FA-AcNH4 dobrze opisuje model Langmuira oraz Redlicha-Petersona. Najwyższą wartość maksymalnej pojemności adsorpcyjnej uzyskano w przypadku FA-NaOH, która wynosiła 220 mg·g–1 s.m. oraz 55 mg·g–1 s.m. odpowiednio dla jonów Pb(II) i Cd(II). Badania wykazały, że FA-NaOH posiadają większą selektywność względem jonów Pb(II) niż względem jonów Cd(II), co jest związane z wielkością promienia uwodnionego jonu metalu i wartością pierwszej stałej równowagi reakcji hydrolizy. Otrzymane dane kinetyczne adsorpcji zostały dobrze wyrażone za pomocą modelu pseudo-drugiego rzędu (R2 = 0,998), natomiast wykazały bardzo słabe dopasowanie do modelu pseudo-pierwszego rzędu (R2 < 0,8). Przeanalizowano model Elovicha oraz model sorpcji wewnątrzziarnowej, który wykazał, że proces sorpcji jonów Pb(II) i Cd(II) jest kontrolowany przez dyfuzyjną warstwę graniczną oraz dyfuzję wewnątrz porów.
The increasing demand for energy throughout the world has led to an increase in the utilization of coal and, subsequently, in the production of large quantities of fly ash as a waste product. In the light of the increasing quantity of fly ash, with a growing demand for electrical energy and hence for thermal power plants, the main challenges faced by the researchers and planners have been to solve the various environmental problems that arise due to the unused and surplus quantity of fly ash. Fly ash is composed of minerals such as quartz, mullite, subordinately hematite and magnetite, carbon, and a prevalent phase of amorphous aluminosilicate. These oxides are very effective adsorbents. Hence, fly ash can be a promising candidate material for heavy metals removal. The aim of this study was to investigate the chemical modifications of coal fly ash (FA) treated with HNO3, CH3COONH4 (AcNH4), and sodium diethyldithiocarbamate (NaDDTC) as an adsorbent for the removal of lead(II) and cadmium(II) ions in single- and bi-component system. In laboratory tests, the equilibrium and kinetic adsorption were examined. The adsorption isotherm models in single-component system were analysed, among others Freundlich, Langmuir, Redlich-Peterson, Jovanovič, Fumkin-Fowler-Guggenheim, Fowler-Guggenheim-Jovanovič-Freundlich, and Halsey, as well as in bi-component system by means of extended Langmuir, Langmuir-Freundlich, and Jain-Snoeyink models. The maximum Pb(II) and Cd(II) ions adsorption capacity obtained from the Langmuir model can be grouped in the following order: FA-NaOH > FA-AcNH4 > FA > FA-NaDDTC > FA-HNO3. Adsorption of Pb(II) and Cd(II) ions in single-component system, both the Langmuir and Redlich-Peterson models for the FA, FA-NaOH, and FA-AcNH4 could be fitted to experimental data. The maximum monolayer adsorption capacity of the FA-NaOH was found to be 220 mg·g–1 dry mass and 55 mg·g–1 dry mass for Pb(II) and Cd(II) ions respectively. Equilibrium experiments shows that the selectivity of FA-NaOH towards Pb(II) ions is greater than that of Cd(II) ions, which is related to their hydrated ionic radius and first hydrolysis equilibrium constant. The adsorption kinetics data were well fitted by a pseudo-second-order rate model (R2 = 0.998) but showed a very poor fit for the pseudo-first order model (R2 < 0.8). The Elovich and intra-particle model were analysed, also revealed that there are two separate stages in the sorption process, namely, the external diffusion and the inter-particle diffusion. It was found that the chemical enhancement of coal fly ash by NaOH treatment yields an effective and economically feasible material for the treatment of Pb(II) and Cd(II) ions-containing effluents.
Czasopismo
Rocznik
Tom
Strony
81--95
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Politechnika Rzeszowska, Wydział Chemiczny, Zakład Chemii Nieorganicznej i Analitycznej, al. Powstańców Warszawy 6, 35-959 Rzeszów
autor
- Politechnika Rzeszowska, Wydział Chemiczny, Zakład Chemii Nieorganicznej i Analitycznej, al. Powstańców Warszawy 6, 35-959 Rzeszów
Bibliografia
- [1] Bedoui K., Bekri Abbes I., Srasra E., Removal of cadmium(II) from aqueous solution using pure smectite and Lewatite S 100: The effect of time and metal concentration, Desalination 2008, 223, 269-273, DOI:10.1016/j.desal.2007.02.078.
- [2] Ferreira T.R., Lopes C.B., Lito P.F., Otero M., Lin Z., Rocha J., Pereira E., Silva C.M., Duarte A., Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-4, Chem. Eng. J. 2009, 147, 173-179, DOI: 10.1016/j.cej.2008.06.032.
- [3] Jiang M., Jin X., Lu X., Chen Z., Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay, Desalination 2010, 252, 33-39, DOI: 10.1016/j.desal.2009.11.005.
- [4] Rangel-Porras G., Garcia-Magno J.B., Gonzalez-Munoz M.P., Lead and cadmium immobilization on calcitic limestone materials, Desalination 2010, 262, 1-10, DOI: 10.1016/j.desal.2010. 04.043.
- [5] Srivastava V.C., Mall I.D., Mishra I.M., Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA), Chem. Eng. J. 2007, 132, 267-278, DOI: 10.1016/j.cej.2007.01.007.
- [6] Ahmaruzzaman M., A review on the utilization of fly ash, Prog. Energ. Combust. 2010, 36, 327-363, DOI: 10.1016/j.pecs.2009.11.003.
- [7] Sočo E., Kalembkiewicz J., Adsorption of nickel(II) and copper(II) ions from aqueous solution by coal fly ash, J. Environ. Chem. Eng. 2013, 1, 581-588, DOI: 10.1016/j.jece.2013.06.029.
- [8] Ruhl L., Vengosh A., Dwyer G.S., Hsu-Kim H., Deonarine A., Environmental impacts of the coal ash spill in Kingston, Tennessee: An 18-month survey, Environ. Sci. Technol. 2010, 44, 9272-9278, DOI: 10.1021/es1026739.
- [9] Jiao F., Wijaya N., Zhang L., Ninomiya Y., Hocking R., Synchrotron-based XANES speciation of chromium in the oxy-fuel fly ash collected from lab-scale drop-tube furnace, Environ. Sci. Technol. 2011, 45, 6640-6646, DOI: 10.1021/es200545e.
- [10] Seredin V.V., Finkelman R.B., Metalliferous coals: A review of the main genetic and geochemical types, Int. J. Coal Geol. 2008, 76, 253-289, DOI: 10.1016/j.coal.2008.07.016.
- [11] Derkowski A., Franus W., Waniak-Nowicka H., Czímerová A., Textural properties v. CEC and EGME retention of Na-X zeolite prepared from fly ash at room temperature, Int. J. Miner. Process. 2007, 82, 57-68, DOI: 10.1016/j.minpro.2006.10.001.
- [12] Hsu T.-C., Yu C.-C., Yeh C.-M., Adsorption of Cu2+ from water using raw and modified coal fly ashes, Fuel 2008, 87, 1355-1359, DOI: 10.1016/j.fuel.2007.05.055.
- [13] Inada M., Eguchi Y., Enomoto N., Hojo J., Synthesis of zeolite from coal fly ashes with different silica-alumina composition, Fuel 2005, 84, 299-304, DOI: 10.1016/j.fuel.2004.08.012.
- [14] An C., Huang G., Stepwise adsorption of phenanthrene at the fly ash-water interface as affected by solution chemistry: Experimental and modeling studies, Environ. Sci. Technol. 2012, 46, 12742-12750, DOI: 10.1021/es3035158.
- [15] Li H-Q., Huang G-H., An Ch-J., Zhang W-X., Kinetic and equilibrium studies on the adsorption of calcium lignosulfonate from aqueous solution by coal fly ash, Chem. Eng. J. 2012, 200-202, 275-282, DOI: 10.1016/j.cej.2012.06.051.
- [16] Nascimento M., Moreira Soares P.S., de Souza V.P., Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method, Fuel 2009, 88, 1714-1719, DOI: 10.1016/ j.fuel.2009.01.007.
- [17] Papandreou A.D., Stournaras C.J., Panias D., Paspaliaris I., Adsorption of Pb(II), Zn(II) and Cr(III) on coal fly ash porous pellets, Miner. Eng. 2011, 24, 1495-1501, DOI: 10.1016/ j.mineng.2011.07.016.
- [18] Visa M., Isac L., Duta A., Fly ash adsorbents for multi-cation wastewater treatment, Appl. Surf. Sci. 2012, 258, 6345-6352, DOI: 10.1016/j.apsusc.2012.03.035.
- [19] Weber Jr. W.J., Morris J.C., Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div.-ASCE 1963, 89 (SA2), 31-59.
- [20] Allen S.J., Mckay G., Khader K.Y., Intraparticle diffusion of basic dye during adsorption onto sphagnum peat, J. Environ. Pollut. 1989, 50, 39-50, DOI: 10.1016/0269-7491(89)90120-6.
- [21] Chien S.H., Clayton W.R., Application of Elovich equation to the kinetics of phosphate release and sorption on soils, Soil Sci. Soc. Am. J. 1980, 44, 265-268.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f699752-8948-491a-9b17-0eed1e64ac7e