Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper is focused on the numerical analysis of the stability and load bearing capacity of a flat steel truss. The structure is supported by elastic lateral braces. The translational and rotational brace stiffness are taken into account. The linear buckling analysis is performed for the beam and shell model of the truss. The nonlinear static analysis is conducted for the structure initial geometric imperfections. As a result, the buckling and limit load depending on brace stiffness has been obtained. The reactions in elastic braces are compared to stabilizing forces calculated on the basis of actual code requirements.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
231--240
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Gdansk, Poland
Bibliografia
- 1. Biegus A., 2015, Trapezoidal sheet as a bracing preventing flat trusses from out-of-plane buckling, Archives of Civil and Mechanical Engineering, 15, 3, 735-741.
- 2. Biegus A., Czepiżak D., 2018, Generalized model of imperfection forces for design of transverse roof bracings and purlins, Archives of Civil and Mechanical Engineering, 18, 267-279.
- 3. Biegus A., Czepiżak D., 2019, Equivalent stabilizing force of members parabolically compressed by longitudal variable axial force, Matec Web of Conferences, 262.
- 4. Czepiżak D., 2013, The simplified method for calculation of roof cross braces (in Polish), Engineering and Construction, 598-600.
- 5. Czepiżak D., Biegus A., 2016, Refined calculation of lateral bracing system due to global geometrical imperfections, Journal of Constructional Steel Research, 119, 30-38.
- 6. Femap with NX Nastran, Instruction manual, Siemens Product Lifecycle Management Software INC., 2009.
- 7. Iwicki P., 2007, Stability of trusses with linear elastic side-supports, Thin Walled Structures, 45, 849-854.
- 8. Iwicki P., 2010, Sensitivity analysis of critical forces of trusses with side bracing, Journal of Constructional Steel Research, 66, 923-930.
- 9. Jankowska-Sandberg J., Kołodziej J., 2013, Experimental study of steel truss lateral-torsional buckling, Engineering Structures, 46, 165-172.
- 10. Krajewski M., 2021, Stability of trusses with elastic side supports, PhD. thesis, Gdansk University of Technology.
- 11. Krajewski M., Iwicki P., 2016, Stability of an imperfect truss loaded by wind, Engineering Transactions, 64, 4, 509-516.
- 12. Lindgaard E., Lund E., Rasmussen K., 2010, Nonlinear buckling optimization of composite structures considering “worst” shape imperfections, International Journal of Solids and Structures, 47, 3186-3202.
- 13. Piątkowski M., 2021, Experimental research on load of transversal roof bracing due to geometrical imperfections of truss, Engineering Structures, 242, 112558.
- 14. PN-EN 1993-1-1, 2005, Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings.
- 15. PN-EN 1090-1+A1:2012 Execution of steel structures and aluminum structures – Part 1: Requirements for conformity assessment of structural components.
- 16. PN-EN 1090-2, 2018, Construction of steel and aluminum structures. Part 2: Technical requirements regarding steel structures.
- 17. Šmak M., Straka B., 2012, Geometrical and structural imperfections of steel member systems, Procedia Engineering, 40, 434-439.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f61a466-93dd-4ee3-9546-5d0d0d0b7684
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.