PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Viscoelastic properties of asphalt concrete using micromechanical self-consistent model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanical properties of Hot Mix Asphalt (HMA) mixes are often characterized by its viscoelastic behavior. Viscoelasticity coupled with the thermo-mechanical nature of asphalt offers time-temperature dependence to the mechanical properties of HMA mixes. Also, the wide range of distribution of particles, and several orders of magnitude of differences in the mechanical properties between constituents cause a wide range of stress and strain distribution within the microstructure. In this paper, micromechanical modeling has been performed to study the relationship between individual material properties, their interaction within the microstructure, and the macroscopic properties of HMA mix. The analytical model based on N phase self-consistent scheme allows calculating the complex modulus and phase angle of HMA mixes from the mechanical properties of its constituents and designed mix data. In the mix microstructure, aggregates and sand are classified using simple sieve analysis test. Asphalt and sand mastic film thicknesses around the aggregates are calculated for each class and introduced into the model.
Rocznik
Strony
272--285
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • National University of Computer and Emerging Sciences, Department of Civil Engineering, Lahore, Pakistan
autor
  • Laboratoire Centrale des Ponts et Chaussées (LCPC) Centre de Nantes, Division Matériaux et structures des chaussées Route de Bouaye, BP 4129, 44341 Bouguenais Cedex, France
Bibliografia
  • [1] C. Huet, Etude par une méthode d'impédance du comportement viscoélastique des matériaux hydrocarbonés, (PhD dissertation), Université de Paris 6, 1963.
  • [2] C. Huet, Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies, Mechanics of Materials 31 (1999) 787–829.
  • [3] G. Sayegh, Contribution à l'étude des propriétés viscoélastiques des bitumes purs et des bétons bitumineux, Ph.D. dissertation, Faculté des Sciences de Paris (1965).
  • [4] D. Christensen, T. Pellinen, R. Bonaquist, Hirsch model for estimating the modulus of asphalt concrete, Journal of Association of Asphalt Paving Technologists 72 (2003) 97–121.
  • [5] I. Hafeez, Impact of hot mix asphalt properties on its permanent deformation behavior, (PhD dissertation), University of Engineering and Technology, Taxila, 2009 October.
  • [6] Z. Hashin, S. Shtrikman, A variational approach to the elastic behavior of multiphase minerals, Journal of the Mechanics and Physics of Solids 11 (2) (1963) 127–140.
  • [7] R.M. Christensen, K.H. Lo, Solutions for effective shear properties in three phase sphere and cylinder models, Journal of the Mechanics and Physics of Solids 27 (4) (1979) 315–330.
  • [8] H. Eklind, F.H.J. Maurer, Micromechanical transitions in compatibilized polymer blends, Polymer 37 (13) (1996) 2641–2651.
  • [9] P. Mele, N.D. Alberola, Prediction of the viscoelastic behaviour of particulate composites: effect of mechanical coupling, Composites Science and Technology 56 (7) (1996) 849–853.
  • [10] E. Hervé, A. Zaoui, Modeling the effective behavior of nonlinear matrix-inclusion composites, European Journal of Mechanics A/Solids 9 (1990) 50–515.
  • [11] E. Hervé, A. Zaoui, N-layered inclusion-based micromechanical modelling, International Journal of Engineering Science 31 (1993) 1–10.
  • [12] M. Shaterzadeh, C. Gauthier, J.F. Gerard, C. Mai, J. Perez, Dynamic mechanical properties of spherical inclusions in polymer composite: a self-consistent approach considering morphology, Polymer Composites 19 (6) (1998) 655–666.
  • [13] L. Adel, A numerical model for the two-phase composites matrix-rigid inclusions: application to the determination of the elastic and fatigue properties of the bituminous materials’’, (PhD thesis), Ecole Nationale de Ponts et Chaussees, (2004).
  • [14] C. Eduardo, Contribution de Méthodes non destructive à l'évaluation de l'effet de l'eau sur les enrobes bitumineux, (PhD thesis), Laboratoire Centrale de Ponts et Chaussées, Bouguenais, France, 2004.
  • [15] R.S. Lakes, A. Wineman, On Poisson's ratio in linearly viscoelastic solids, Journal of Elasticity (2006), Springer.
  • [16] N.W. Tschoegl, W.G. Knauss, I. Emri, Poisson's ratio in linear, viscoelasticity – a critical review, Mechanics of Time- Dependent Materials 6 (1) (2002) 3–51.
  • [17] Q. Xu, Solaimanian, Modelling linear viscoelastic properties of asphalt concrete by the Huet-Sayegh model, International Journal of Pavement Engineering 10 (6) (2009) 401–422.
  • [18] Ch. Pichler, R. Lackner, E. Aigner, Generalized self-consistent scheme for upscaling of viscoelastic properties of highly-filled matrix-inclusion composites – application in the context of multiscale modeling of bituminous mixtures, Composites: Part B 43 (2012) 457–464.
  • [19] X.-y. Zhu, Z.-x. Yang, X.-m. Guo, W.-q. Chen, Modulus prediction of asphalt concrete with imperfect bonding between aggregate-asphalt mastic, Composites: Part B 42 (2011) 1404–1411.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f5e5099-9f0c-4fb3-a260-c865025689b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.