Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we reveal the transmission properties of the M-type combined solitary wave in birefringent fiber with third-order dispersion, self-frequency shift, self-steepening, fifth-order nonlinearity and the gain (loss) effects. The numerical simulations show that the M-type solitary wave can be stably transmitted through 300 dispersion lengths via balancing the variety of effects. And it can even be stably transmitted under the condition of limited interference under a small perturbation of noise, amplitude and phase position. The results can provide certain references for there search of optical soliton communication and optical devices.
Czasopismo
Rocznik
Tom
Strony
241--250
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
autor
- College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
autor
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China
autor
- College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
Bibliografia
- [1] AGRAWAL G.P., Nonlinear Fiber Optics, Academic Press, New York, 1995, pp. 188–208.
- [2] HASEGAWA A., KODAMA Y., Solitons in Optical Communications, Oxford University Press, Oxford, 1995, pp. 153–161.
- [3] KAO K.C., HOCKHAM G.A., Dielectric-fibre surface waveguides for optical frequencies, Electromagnetic Wave Theory 113(3), 1966, pp. 441–444.
- [4] KODAMA Y., HASEGAWA A., Amplification and reshaping of optical solitons in a glass fiber—II, Optics Letters 7(7), 1982, pp. 339–341, DOI:10.1364/OL.7.000339.
- [5] MOLLENAUER L.F., STOLEN R.H., GORDON J.P., Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Physical Review Letters 45(13), 1980, pp. 1095–1098, DOI:10.1103/PhysRevLett.45.1095.
- [6] AGRAWAL G.P., Nonlinear Fiber Optics, 3rd Ed., Publishing House of Electronic Industry, Beijing, 2002, pp. 10–12, 129–156.
- [7] RASHLEIGH S., Origins and control of polarization effects in single-mode fibers, Journal of Lightwave Technology 1(2), 1983, pp. 312–331, DOI:10.1109/JLT.1983.1072121.
- [8] HASEGAWA A., KODAMA Y., Solitons in Optical Communications, Oxford University Press, Oxford, 1995, pp. 11–12.
- [9] CHRISTODOULIDES D.N., JOSEPH R.I., Discrete self-focusing in nonlinear arrays of coupled wave-guides, Optics Letters 13(9), 1988, pp. 794–796, DOI:10.1364/OL.13.000794.
- [10]ZAKHAROV V.F., SHABAT A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Journal of Experimental and Theoretical Physics JETP 34(1), 1972, pp. 62–69.
- [11] LI Z., LI L., TIAN H., ZHOU G., New types of solitary wave solutions for the higher order nonlinear Schrödinger equation, Physical Review Letters 84(18), 2000, pp. 4096–4099, DOI:10.1103/PhysRevLett.84.4096.
- [12] FANG F., XIAO Y., Stability of chirped bright and dark soliton-like solutions of the cubic complex Ginzburg–Landau equation with variable coefficients, Optics Communications 268(2), 2006, pp. 305–310, DOI:10.1016/j.optcom.2006.07.014.
- [13] SUN W.-R., TIAN B., WANG Y.-F., ZHEN H.-L., Dark single- and double-hump vector solitons of the coupled higher-order nonlinear Schrödinger equations in the birefringent or two-mode fibers, Optics Communications 335, 2015, pp. 237–244, DOI:10.1016/j.optcom.2014.09.007.
- [14] ASSANTO G., MACNEIL J.M.L., SMYTH N.F., Diffraction-induced instability of coupled dark solitary waves, Optics Letters 40(8), 2015, pp. 1771–1774, DOI:10.1364/OL.40.001771.
- [15] KONG Y., Spatiotemporal soliton solution to generalized nonlinear Schrödinger equation with a parabolic potential in Kerr media, Optics Communications 371, 2016, pp. 27–33, DOI:10.1016/j.optcom.2016.03.004.
- [16] ARSHAD M., SEADAWY A.R., LU D., Exact bright–dark solitary wave solutions of the higher-order cubic–quintic nonlinear Schrödinger equation and its stability, Optik 138, 2017, pp. 40–49, DOI:10.1016/j.ijleo.2017.03.005.
- [17] MESSOUBER A., TRIKI H., AZZOUZI F., ZHOU Q., BISWAS A., MOSHOKOA S.P., BELIC M., Propagation properties of dipole-managed solitons through an inhomogeneous cubic–quintic–septic medium, Optics Communications 425, 2018, pp. 64–70, DOI:10.1016/j.optcom.2018.04.051.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f5adc2d-ff3c-4168-9c94-a34fba0bea4a