PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite Element Method application for modelling of internal oesophageal prosthesis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The general topic of this paper is the computer simulation with the use of finite element method for determining the internal stresses in the internal oesophageal prosthesis based on long-fibre composite material. Design/methodology/approach: Modelling of stresses in the internal oesophageal prosthesis was performed with the help of finite element method in ANSYS environment. Application of Finite Element Method was discussed and essential advantages resulting from application of it are pointed Findings: The presented model meets the initial criteria, which gives ground to the assumption about its usability for determining the stresses in the internal oesophageal prosthesis, employing the finite element method using the ANSYS program. The computer simulation results correlate with the experimental results. Research limitations/implications: Applied Finite Element Method enables modelling of stresses and deformations arises in composite material in the conditions representing real experimental investigations as well as condition similar to those prevailing in human body after prosthesis implementation. Originality/value: Developed simulation simplifies and reduces cost of optimization of the internal oesophageal prosthesis properties by simulation of this properties without necessity of additional laboratory investigations.
Rocznik
Strony
198--204
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Materials Science and Applied Mechanics, Faculty of Mechanical Engineering, Wroclaw University of Technology, ul. Smoluchowskiego 25, 50-370 Wrocław, Poland
autor
  • Institute of Materials Science and Applied Mechanics, Faculty of Mechanical Engineering, Wroclaw University of Technology, ul. Smoluchowskiego 25, 50-370 Wrocław, Poland
Bibliografia
  • [1] T. Antosik, J. Awrejcewicz, Numerical and experimental analysis of biomechanics of three lumbar vertebrae, Journal of Theoretical and Applied Mechanics 3 (1999) 413-434.
  • [2] K.J. Bathe, Finite element procedures in engineering analysis, Publication of Hall, New Jersey, 1982.
  • [3] P. Borkowski, K. Kędzior, G. Krzesiński, K.R. Skalski, P. Wymysłowski, T. Zagrajek, Numerical investigation of a new type of artificial lumbar disc, Journal of Theoretical and Applied Mechanics 42/1(2004) 253-268.
  • [4] D. Chua, Finite elements simulation of stent expansion, Journal of Materials Processing Technology 120 (2002) 335-340.
  • [5] L.A. Dobrzański, A. Pusz A, A.J. Nowak, The effect of micropores on output properties of laminates materials with assumed medical implantation, Journal of Achievements In Materiale and Manufacturing Engineering 37/2 (2009) 408- 415.
  • [6] L.A. Dobrzański, A. Pusz, A.J. Nowak, M. Górniak, Constructional model of internal oesophageal prosthesis, Archives of Materials Science and Engineering 42/2 (2010) 69-76 2010.
  • [7] L.A. Dobrzański, A. Pusz, A.J. Nowak, M. Górniak, Application of computer techniques in modelling of biofunctional implants, Journal of Achievements in Material and Manufacturing Engineering (in print).
  • [8] L.A. Dobrzański, A. Pusz, A.J. Nowak, M. Górniak, Non-standard test methods for long-fibrous reinforced composite materials, Archives of Materials Science and Engineering 47/1 (2011) 5-10.
  • [9] L.A. Dobrzański, A. Pusz, A.J. Nowak, M. Górniak, The concept of preparation of oesophageal prosthesis based on long-fiber composite material, Journal of Achievements in Materials and Manufacturing Engineering 46/1 (2011) 18-24.
  • [10] A. Grabarski, I. Wróbel, Introduction to FEM, Publishing house Warsaw University of Technology, Warsaw 2008 (in Polish).
  • [11] W. Grzesikiewicz, A. Zbiciak, Study of generalized Prandtl rheological model for constitutive description of elastoplastic properties of materials, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 501-510.
  • [12] A. Kocańda, O. Czyżewski, Numerical analysis of abrasive wear of forging dies, Numiform 104-106 (2001).
  • [13] M. Kopernik, J. Nowak, Physical and numerical modeling of functional trileaflet aortic valves, Mechanic 11 (2008) 958-963.
  • [14] K. Król, Finite Element Method in the design calculations, Publishing house Radom University of Technology, Radom, 2007 (in Polish).
  • [15] W. Kwaśny, R. Dziwis, Application of the Finite Element Method for computer simulation of aluminum stamping process, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 551-555.
  • [16] M.R. Labrosse, C.J. Beller, F. Robicsek, M.J. Thubrikar, Geometric modeling of functional trileaflet aortic valves. Development and clinical applications, Journal of Biomechanics 39 (2006) 2665-2672.
  • [17] S. Łączka, Introduction to the ANSYS Finite element system, Cracow Technical University Press, 1999.
  • [18] T. Łodygowski, Finite element method in selected problems of mechanics end construction engineering, Publishing house University of Technology, Poznan, 1991.
  • [19] F. Migliavacca, Mechanical behavior of coronery stents investigated through the fine element method, Journal of Biomechanics 35 (2002) 803-811.
  • [20] A.J. Nowak, Structure and properties of newly developed composite material for internal prosthesis of oesophagus, PhD Thesis, Central Library of The Silesian University of Technology, Gliwice, 2011.
  • [21] T. Pedersen, Numerical modelling of cyclic plasticity and fatigue damage in cold-forging tools, International. Journal of Mechanical Sciences 42 (2000) 799-818.
  • [22] G. Rakowski, Z. Kacprzyk, FEM in mechanical design, Publication of Warsaw University of Technology, Warsaw, 2005 (in Polish).
  • [23] A. Śliwa, M. Matula, L.A. Dobrzański, Finite Element Method application for determining feedstock distribution during powder injection moulding, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 584-591.
  • [24] A. Śliwa, J. Mikuła, K. Gołombek, L.A. Dobrzański, FEM modelling of internal stresses in PVD coated FGM,, Journal of Achievements in Materials and Manufacturing Engineering 36/1 (2009) 71-78.
  • [25] J. Stadnicki, Z. Tokarz, Analysis of deflection of composite aircraft wing, Bulletin of the Military Technical Academy 57/2 (2008) 45-54 2008.
  • [26]T. Stolarski, Y. Nakasone, S. Yoshimoto, Engineering analysis with ansys software, Publishing house Elsevier, United Kingdom, 2008.
  • [27]M. Szymiczek, G. Wróbel, M. Rojek, T. Czapla, Simulation diagnostics of the polyester-glass pipes degradation process;experimental basis, Journal of Achievements in Materials and Manufacturing Engineering 59/1 (2013) 37-47.
  • [28]F.D. Whitcher, Symulation of in vivo loadin conditions of nitinol waskular stent structures, Computers and Structures 64 (1997) 1007-1011.
  • [29]G. Wróbel, M. Rojek, M. Szymiczek, Simulation studies of fatigue degradation process with reference to composite pipes, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 596-599.
  • [30]www.ansys.com
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f57612e-8507-4b05-803e-d3700b02c50b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.