PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical approximation of the Riemann-Liouville fractional integrals using the akima spline interpolation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the numerical algorithms for evaluating the values of the left- and right-sided Riemann-Liouville fractional integrals using the linear and Akima cubic spline interpolations. Sample numerical calculations have been performed based on the derived algorithms. The results are presented in two tables. Knowledge of the closed analytical expressions for sample fractional integrals makes it possible to determine the numerical errors and the experimental rates of convergence for each derived algorithm.
Rocznik
Strony
30--43
Opis fizyczny
Bibliogr. 23 poz., tab.
Twórcy
  • Department of Computer Science, Czestochowa University of Technology Czestochowa, Poland
Bibliografia
  • [1] Kilbas, A., Srivastava, H., & Trujillo, J. (2006). Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier.
  • [2] Podlubny, I. (1999). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. San Diego: Academic Press.
  • [3] Padder, A., Almutairi, L., Qureshi, S., & et al. (2023). Dynamical analysis of generalized tumor model with Caputo fractional-order derivative. Fractal and Fractional, 7(3), 258.
  • [4] Qureshi, S., Abro, K.A., & Gómez-Aguilar J.F. (2023). On the numerical study of fractional and non-fractional model of nonlinear Duffing oscillator: a comparison of integer and non-integer order approaches. International Journal of Modelling and Simulation, 43(4), 362-375.
  • [5] Rashid, J., Qureshi, S., Boulaaras, S., & et al. (2023). Optimization of the fractional-order parameter with the error analysis for human immunodeficiency virus under Caputo operator. Discrete and Continuous Dynamical Systems - S, 16(8), 2118-2140.
  • [6] Siedlecka, U., & Ciesielski, M. (2021). Analysis of solutions of the 1D fractional Cattaneo heat transfer equation. Journal of Applied Mathematics and Computational Mechanics, 20(4), 87-98.
  • [7] Klimek, M., Ciesielski, M., & Blaszczyk, T. (2022). Exact and numerical solution of the fractional Sturm-Liouville problem with Neumann boundary conditions. Entropy, 24(2), 143.
  • [8] de Oliveira, E., & Machado, J. (2014). A review of definitions for fractional derivatives and integral. Mathematical Problems in Engineering, Article ID 238459.
  • [9] Oldham, K., & Spanier, J. (1974). The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. San Diego: Academic Press.
  • [10] Cai, M., & Li, C. (2020). Numerical approaches to fractional integrals and derivatives: A review. Mathematics, 8(1), 43.
  • [11] Li, C., & Zeng, F. (2015). Numerical Methods for Fractional Calculus. New York: Chapman and Hall/CRC.
  • [12] Almeida, R., Pooseh, S., & Torres, D. (2015). Computational Methods in the Fractional Calculus of Variations. London: Imperial College Press.
  • [13] Blaszczyk, T., & Siedlecki, J. (2014). An approximation of the fractional integrals using quadratic interpolation. Journal of Applied Mathematics and Computational Mechanics, 13(4), 13-18.
  • [14] Baleanu, D., Diethelm, K., Scalas, E., & Trujillo, J. (2012). Fractional Calculus: Models and Numerical Methods. Singapore: World Scientific.
  • [15] Blaszczyk, T., Siedlecki, J., & Ciesielski, M. (2018). Numerical algorithms for approximation of fractional integral operators based on quadratic interpolation. Mathematical Methods in the Applied Sciences, 41(9), 3345-3355.
  • [16] Odibat, Z. (2006). Approximations of fractional integrals and Caputo fractional derivatives. Applied Mathematics and Computation, 178(2), 527-533.
  • [17] Akima, H. (1970). A new method of interpolation and smooth curve fitting based on local procedures. Journal of the Association for Computing Machinery, 17(4), 589-602.
  • [18] Akima, H. (1991). A method of univariate interpolation that has the accuracy of a third-degree polynomial. ACM Transactions on Mathematical Software, 17(3), 341-366.
  • [19] Engeln-Müllges, G., & Uhlig, F. (1996). Numerical Algorithms with C. Berlin: Springer.
  • [20] Burden, R., Faires, J., & Burden, A. (2016). Numerical Analysis. 10th Edition, Boston: Cengage Learning.
  • [21] Siddiqi, A., Al-Lawati, M., & Boulbrachene, M. (2017). Modern Engineering Mathematics. New York: Chapman and Hall/CRC.
  • [22] Press, W., Teukolsky, S., Vetterling, W., & Flannery B. (2007). Numerical Recipes: The Art of Scientific Computing. 3rd ed. New York: Cambridge University Press.
  • [23] Bateman, H., & Erdélyi, A. (1954). Tables of Integral Transforms. Vol. 2. New York: McGraw-Hill.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f54f486-c09d-4306-80b1-bc8e81df4bdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.