PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fatigue testing machines and apparatus

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Maszyny i aparatura do badań zmęczeniowych
Języki publikacji
EN
Abstrakty
EN
This paper presents selected examples of construction and applications of fatigue test stands. The authors made a review of universal fatigue machines and test stands, made specifically for own and individual programs to research fatigue material properties. The publication contains the developed procedures to determine the fatigue life of materials. The authors also describe how to implement these procedures to control and measurement systems in research stands. The article briefly reviews the history of the development of fatigue testing methods, with respect to industrial needs. Moreover, it presents selected examples of solutions and applications systems for fatigue testing, available in scientific
PL
W artykule przedstawiono wybrane przykłady budowy i zastosowań stanowisk do badań zmęczeniowych tworzyw konstrukcyjnych. Autorzy dokonali przeglądu uniwersalnych maszyn zmęczeniowych i stanowisk testowych, jak również urządzeń stworzonych specjalnie dla indywidualnych programów badania własności zmęczeniowych materiałów. Autorzy opisują również, jak wdrożyć te procedury do układów sterowania i pomiarów w stanowiskach badawczych.. W artykule przedstawiono historię rozwoju metod badań zmęczeniowych w odniesieniu do potrzeb przemysłu. Ponadto zaprezentowano wybrane przykłady rozwiązań i ich aplikacji do badań zmęczeniowych, dostępnych w nauce.
Rocznik
Strony
80--108
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
  • Przedsiębiorstwo Techniczne Energopiast Sp. z o.o., Poland
  • Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, Poland
  • Faculty of Production Engineering and Logistics, Opole University of Technology, Poland
  • Institute of Production Engineering and Safety, Facuty of Management, Czestochowa University of Technology, Poland
Bibliografia
  • [1] Weibull W.: Fatigue testing and analysis of results, Pergamon Press, Oxford, 1961, p. 250.
  • [2] Shawki G.S.A.: A review of fatigue testing machines, Engineering Journal of Qatar University, Vol. 3, 1990.
  • [3] Fenner A.J.: Mechanical testing of materials, London, Newnes, 1965, p. 221.
  • [4] Fitzka M., Mayer H.: Constant and variable amplitude fatigue testing of aluminum alloy 2024-T351 with ultrasonic and servo-hydraulic equipment, International Journal of Fatigue, 91, August 2015, DOI: 10.1016/j.ijfatigue.2015.08.017.
  • [5] Pohja R., Nurmela A., Moilanen P., Holmström S.: Multifunctional High Precision Pneumatic Loading System (HIPS) for Creep-Fatigue Testing, Procedia Engineering, 2013, DOI: 10.1016/j.proeng.2013.03.297.
  • [6] Kim C.Y., Song J.H., Lee D.Y.: Development of a fatigue testing system for thin films,” International Journal of Fatigue, Vol. 31, No 4, 2009, pp. 736–742, http://dx.doi.org/10.1016/j.ijfatigue.2008.03.010.
  • [7] Owsiński R., Niesłony A.: Analytical Model of Dynamic Behaviour of Fatigue Test Stand—Description and Experimental Validation, in Dynamical Systems Modelling, J. Awrejcewicz, Ed. Springer International Publishing, 2015, pp. 293–317, DOI: 10.1007/978-3-319-42402-6_24.
  • [8] Macek W., Macha E.: Energy-saving Mechatronic System for Fatigue Tests of Materials under Variable-amplitude Proportional Bending and Torsion, Solid State Phenomena Vol. 164, 2010, pp. 67-72, DOI: 10.4028/www.scientific.net/SSP.164.67.
  • [9] Pawliczek R.: Influence of the Mean Load Value in Fatigue Block Loading on Strains, Key Engineering Materials, 2014, Vol. 598, DOI: 10.4028/www.scientific.net/KEM.598.195.
  • [10] ASTM E466 – 15, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, 2015, DOI: 10.1520/E0466-15.
  • [11] ISO 1099:2006, Metallic Materials – Fatigue testing – Axial Force-Controlled method, 2006.
  • [12] ASTM E606 / E606M – 12, Standard Practice for Strain-Controlled Fatigue Testing, 2012, DOI: 10.1520/E0606_E0606M-12.
  • [13] ISO 12106:2003, Metallic Materials – Fatigue testing – Axial Strain-Controlled method, 2003.
  • [14] Macek W., Łagoda T., Mucha N.: Energy-based fatigue failure characteristics of materials under random bending loading in elastic‐plastic range. Fatigue Fract. Eng. Mater. Struct., 2017, pp. 1–11. https://doi.org/10.1111/ffe.12677.
  • [15] Kamaya M.: Development of disc bending fatigue test technique for equi-biaxial loading, International Journal of Fatigue, 82, 2016, pp. 561–57, DOI: 10.1016/j.ijfatigue.2015.09.012.
  • [16] Nikitin A., Bathias C., Palin-Luc T.: A new piezoelectric fatigue testing machine in pure torsion for ultrasonic gigacycle fatigue tests: application to forged and extruded titanium alloys, Fatigue Fract Engng Mater Struct , 2015, Vo. 38, pp. 1294–1304, DOI: 10.1111/ffe.12340.
  • [17] Macek W., Macha E.: The control system based on FPGA technology for fatigue test stand MZGS-100 PL,” Archive of Mechanical Engineering, Vol. LXII, 2015, pp. 85-100, DOI:10.1515/meceng-2015-0006.
  • [18] Frendo F., Bertini L.: Fatigue resistance of pipe-to-plate welded joint under in-phase and out-of-phase combined bending and torsion, International Journal of Fatigue, 79, 2015, pp. 46–53, DOI: 10.1016/j.ijfatigue.2015.04.020.
  • [19] Będkowski W.; Macha E.; Słowik J.: The fatigue characteristics of materials with strain energy density parameter, The Archive of Mechanical Engineering, Vol. 51, No 3, 2004, pp. 437-451.
  • [20] Morishita T., Itoh T., Bao Z.: Multiaxial fatigue strength of type 316 stainless steel under push&pull, reversed torsion, cyclic inner and outer pressure loading, International Journal of Pressure Vessels and Piping, Vol. 139-140, 2016, pp. 228-236, http://dx.doi.org/10.1016/j.ijpvp.2016.02.024.
  • [21] Li R.H., Zhang P., Zhang Z.F.: Fatigue cracking and fracture behaviors of coarse-grained copper under cyclic tension–compression and torsion loadings, Materials Science & Engineering A, 574, 2013, pp. 113–122, DOI:10.1016/j.msea.2013.03.020.
  • [22] Inoue, T., Nagao, R., Takeda, N.: Random non-proportional fatigue tests with planar tri-axial fatigue testing machine, Frattura ed Integrità Strutturale, 38, 2016, pp. 259-265, DOI:10.3221/IGF-ESIS.38.35.
  • [23] Ulewicz, R., Szataniak, P. (2016). Fatigue Cracks of Strenx Steel. In Materials Today: Proceedings (Vol. 3, pp. 1195–1198). Elsevier Ltd. https://doi.org/10.1016/j.mat pr.2016.03.007.
  • [24] Brugger C.; Palin-Luc T.; Osmond P.; Blanc M.: Ultrasonic fatigue testing device under biaxial bending, Frattura ed Integrità Strutturale, 37, 2016, pp. 46-51, DOI:10.3221/IGF-ESIS.37.07.
  • [25] Pawliczek R., Prazmowski M., Study on material property changes of mild steel S355 caused by block loads with varying mean stress, International Journal of Fatigue, Vol. 80, 2015, pp. 171–177, DOI:10.1016/j.ijfatigue.2015.05.019.
  • [26] Macek W., Mucha N. Evaluation of Fatigue Life Calculation Algorithm of the Multiaxial Stress-Based Concept Applied to S355 Steel under Bending and Torsion, Mech. Mech. Eng. 21 (2017) 935–951.
  • [27] Szusta J., Seweryn A.: Experimental study of the low-cycle fatigue life under multiaxial loading of aluminum alloy EN AW-2024-T3 at elevated temperature, International Journal of Fatigue 96, 2017, pp. 28–42, DOI: 10.1016/j.ijfatigue.2016.11.009.
  • [28] Liu M.D.; Xiong J.J.; Liu J.Z.; Tian B.J.; “Modified model for evaluating fatigue behaviors and lifetimes of notched aluminum-alloys at temperatures of 25°C and −70°C,” International Journal of Fatigue, Vol. 93, No 1, pp.122–132, http://dx.doi.org/10.1016/j.ijfatigue.2016.08.012.
  • [29] Reclaru L., Brooks R.A., Zuberbühler M., Eschler P.Y., Constantin F., Tomoaia G.: Evaluation of taper joints with combined fatigue and crevice corrosion testing: Comparison to human explanted modular prostheses, Materials Science and Engineering, Volume 34, 2014, pp. 69–77, DOI:10.1016/j.msec.2013.10.005.
  • [30] F 1440 ASTM standard.
  • [31] Tong L., Xu G., Yan D., Zhao X.L.: Fatigue tests and design of diamond bird-beak SHS T-joints under axial loading in brace, Journal of Constructional Steel Research, Vol. 118, 2016, pp. 49–59, http://dx.doi.org/10.1016/j.jcsr.2015.10.025.
  • [32] MTS. Model 329 Multiaxial, 2014.
  • [33] Zwick / Roell catalog “Dynamic and fatigue testing systems”.
  • [34] ASTM E1942 - 98(2010)e1, Standard Guide for Evaluating Data Acquisition Systems Used in Cyclic Fatigue and Fracture Mechanics Testing, DOI: 10.1520/E1942-98R10E01.
  • [35] Instron (Catalog no. 2620-602).
  • [36] Shao X., Eisa M., Chen Z., Dong S., He X.: Self-calibration single-lens 3D video extensometer for high-accuracy and real-time strain measurement, Opt. Express, Vol. 24, 2016, pp. 30124-30138, https://doi.org/10.1364/OE.24.030124.
  • [37] ASTM E467-08, Standard Practice for Verification of Constant Amplitude Dynamic Forces in an Axial Fatigue Testing System, 2014, DOI: 10.1520/E0467-08R14.
  • [38] ISO 23788:2012, “Metallic materials - Verification of the alignment of fatigue testing machines.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f54e355-868d-4f56-9bc7-db5fc90386f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.