PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development and Study of High Energy Igniter/Booster Pyrotechnic Compositions for Impulse Cartridges

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to suitably initiate an impulse cartridge and to get the desired peak pressure, high energy igniter and booster pyrotechnic compositions may be required. Studies were undertaken to develop different types of high energy igniter and booster pyrotechnic compositions comprising B/KNO3, Zr/KClO4 and Pb(SCN)2/KClO3 as igniter compositions, and B/Mg/KClO4/Bi2O3 and B/Mg/KClO4 as booster compositions. Different ratios of fuels and oxidizers were studied in order to determine the best igniter and booster compositions. The measurement of the calorific values for the igniter and the booster compositions, along with safety tests of the igniter compositions, were performed. The pattern of calorific values observed for the igniter and booster compositions under study were B/KNO3 > Zr/KClO4 > Pb(SCN)2/KClO3 and B/Mg/KClO4 > B/Mg/KClO4/Bi2O3, respectively. The newly-developed high energy igniter compositions passed all of the safety tests. Both igniter and booster compositions were also subjected to functional tests in an impulse cartridge. The functional tests were intended for the determination of peak pressure and time to peak pressure. These high energy igniter and booster compositions increased the peak pressure by 8.3% and reduced the time to peak pressure by 14.3% for an impulse cartridge in a closed chamber of volume 230 cm3. The consequence of this research work is that the best combination of igniter and booster compositions in terms of safety, calorific values and cartridge functionality are Zr/KClO4 (40/60) and B/Mg/KClO4 (30/10/60), respectively.
Rocznik
Strony
933--951
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • National University of Science and Technology Pakistan (NUST), H-12, 25000 Islamabad, Pakistan
autor
  • National University of Science and Technology Pakistan (NUST), H-12, 25000 Islamabad, Pakistan
autor
  • National University of Science and Technology Pakistan (NUST), H-12, 25000 Islamabad, Pakistan
Bibliografia
  • [1] Kosanke, K. L. B. J. Lecture Notes Pyrotechnic Chemistry, Reference Series No. 2 J. Pyrotech. 2004, pp. 3-5; ISBN 1-889526-16-9.
  • [2] Conkling, J. A.; Mocella, C. Chemistry of Pyrotechnics: Basic Principles and Theory. CRC Press, 1985, pp. 97-110; ISBN 0-8247-7443-4.
  • [3] Electro Explosive Subsystems, Electrically Initiated, Design Requirements and Test Methods. MIL-HDBK-1512 (USAF), Department of Defense Hand Book, 1997.
  • [4] Fred, L. M. A Compilation of Hazard and Test Data for Pyrotechnic Compositions. US Armament Research and Development Command, 1980.
  • [5] Brown, M. H.; Crossley, J. F.; Hamilton, Ch. R.; Hoelzen, W. R. Electric Initiators for Explosives, Pyrotechnics and Propellants. Patent US 3117519, 1964.
  • [6] Yang, L. C.; Flintridge, L. Ignition Transfer Effectiveness from Primers to Physically Separated Pyrotechnic Booster. Proc AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 49th, San Jose, CA 2013.
  • [7] Stevens, B. A. Auto Ignition Pyrotechnic Booster. Patent US 0235863A1, 2005.
  • [8] Charsley, E. L. Pyrotechnic and Thermal Studies on the Magnesium-Strontium Nitrate Pyrotechnic System. Propellants Explos. Pyrotech. 2006, 32(2): 110-115.
  • [9] Lu, K. T.; Yang, C. C. Thermal Analysis Studies on the Slow‐Propagation Tungsten Type Delay Composition System. Propellants Explos. Pyrotech. 2008, 33(5):403-410.
  • [10] Lachute, R. A. Delay Composition and Detonation Delay Device Utilizing Same. Patent US 8066832B2, 2011.
  • [11] AI-Kazraji, S. S.; Rees, G. J. The Fast Pyrotechnic Reaction of Silicon and Red Lead: Heats of Reaction and Rates of Burning. Fuel 1979, 58(2): 139-143.
  • [12] Lee, J. S. Thermal Properties and Firing Characteristics of the Zr/KClO4/Viton A Primary Compositions. Thermochim. Acta 2002, 392-393:147-152.
  • [13] Kelly, M. D.; Alan, W. A. Ignitor with Stable Low-energy Thermite Igniting System. Patent US 4989515, 1991.
  • [14] Kuwahara, T.; Tohara, C. Ignition Characteristics of Zr/BaCrO4 Pyrolant. Propellants Explos. Pyrotech. 2002, 27(5): 284-289.
  • [15] Lee, J. S.; Hsu, C. K. The Effect of Different Zirconium on Thermal Behaviors for Zr/KClO4 Priming Compositions. Thermochim. Acta 2001, 367: 375-379.
  • [16] Kim, J.; Seo, T.; Ko. S.; Ryu, B. Thermal Decomposition Kinetics of ZPP as a Primary Charge of Initiators. Journal of the Korean Society of Propulsion Engineers 2015, 19(5): 15-21.
  • [17] Carr, C. E.; Thomas, M. J. Factors Influencing BKNO3 Igniter Performance. AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 23rd, Diego, California 1987.
  • [18] Operating Instructions for Haver Test Shaker. EML 200-89 Digital, 1993.
  • [19] Detail Specification, Initiators Electric, General Design Specification. MIL-DTL-23659E, 2007.
  • [20] Hobin, S. L.; Flintridge, L. A Study on Closed Bomb Method of Validating Energetic Components. AIAA/ASME/SAE/ASEE Joint Propulsion Conf., 40th, Fort Lauderdale, Florida 2004.
  • [21] Lee, J. S.; Lin, L. K.; Lin, C. H.; Chen, P. J.; Huang, C. W.; Chang, S. S. A Study of Zirconium/Potassium Perchlorate Primer Mixture. Thermochim. Acta 1990, 173: 211-218.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f51fdfb-8aaa-42ee-81bc-cab734989418
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.