PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical procedures and their practical application in PV modules analyses. Part 1, Air mass

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The subject of the article is aspects of PV modules and cells measurement, with the use of natural sunlight. A light source is an important element during calibration and measurements of solar cells and modules. All designers of artificial light sources try to recreate natural light using so called measurement tables. The correctly performed measurement, i.e. meeting all the appropriate atmospheric conditions, guarantees obtaining the result with the use of a reference spectrum. The article has two main aims. The first aim of the article is to answer the question asked earlier - if the sunlight spectrum registered in appropriate conditions is so good that it serves as the reference spectrum - then, in practice, during measurements carried out with its use, certain problems occur regarding the correct measurement results or their interpretation. The second aim regards presenting detailed numeric procedures in order to enable readers to associate air mass with geographical coordinates and Local Solar Time of their study/laboratory location. Moreover, having the data from their local meteorological station, they will be able to estimate the occurrence of the measurement spectral error of the tested cell/module not only from the group referred to in the article but also for others, for which they have a dedicated characteristics of spectral response.
Twórcy
  • Institute of Biotechnology, University of Opole, ul. kard. B. Kominka 6, 45-032 Opole, Poland
  • Institute of Biotechnology, University of Opole, ul. kard. B. Kominka 6, 45-032 Opole, Poland
Bibliografia
  • [1] F. Kasten, A. Young, Revised optical air mass and approximation formula, Appl. Opt. 28 (1989) 4735–4738, http://dx.doi.org/10.1364/AO.28.004735.
  • [2] D.L. King, J.A. Kratochvil, W.E. Boyson, Measuring solar and angle-of-incidenceeffects on photovoltaic modules and solar irradiance sensor, in: 26ThIEEEPVSC Anaheim, 1997 http://www.pvsc-proceedings.org/.
  • [3] C. Gueymard, Parameterized transmittance model for direct beam andcircumsolar spectral irradiance, Sol. Energy 71 (2001) 325–346, http://dx.doi.org/10.1016/S0038-092X(01)00054-8.
  • [4] C. Gueymard, SMARTS2, a Simple Model of the Atmospheric RadiativeTransfer of Sunshine. FSEC-PF-270-95, Florida Solar Energy Centre, Florida,1995 https://www.nrel.gov/grid/solar-resource/smarts.html.
  • [5] F.M. Miskolczi, High resolution atmospheric radiance-transmittance code(HARTCODE), in: Meteorology and Environmental Sciences, World Scientific,Singapore, 1990.
  • [6] C. Whitaker, J. Newmiller, Photovoltaic Module Energy Rating Procedure.Final Subcontract Report. NREL Contract No. DE-AC36-83CH10093, NewmillerEndecon Engineering San Ramon, California, 1998 https://www.nrel.gov/docs/legosti/old/23942.pdf.
  • [7] F. Kasten, Arch. Meteorol. Geophys. Bioclimate. 14 (1966) 206–211.
  • [8] T. Rodziewicz, T. Żdanowicz, M. Ząbkowska-Wacławek, Seasonal behaviour ofdifferent PV modules, Chem. Inż. Ekol. 9 (2002) 1241–1249.
  • [9] M. Wacławek, T. Rodziewicz, Ogniwa Słoneczne, Wpływ środowiska naturalnego na ich pracę [Solar cells. Impact of Natural Environment on TheirOperation], PWN, Warszawa, 2010 (IN POLISH).
  • [10] J.W. Spencer, Fourier series representation of the position of the sun, Search. 2(1971) 162–172.
  • [11] D.J. Myers, Solar Applications in Industry and Commerce, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984 https://www.researchgate.net/publication/294774421 SOLAR APPLICATIONS IN INDUSTRY ANDCOMMERCE.
  • [12] H. Chenming, M.R. White, Solar Cells From Basics to Advanced System, McGraw-Hill Book Company, New York, 1983 https://www.amazon.com/Solar-Cells-Advanced-ELECTRICAL-ENGINEERING/dp/0070307458.
  • [13] IEC 60904-3 ED4, Photovoltaic Devices – Part 3: Measurement Principles forTerrestrial Photovoltaic (PV) Solar Devices With Reference Spectral IrradianceData, 2017 http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP ORG ID:1276.
  • [14] C.A. Gueymard, D. Myers, K. Emery, Proposed reference irradiance spectra forsolar energy systems testing, Sol. Energy 73 (2002) 443–467 https://www.sciencedirect.com/search?pub=Solar%20Energy&volume=73&page=443&show=25&sortBy=relevance&origin=jrnlhome&zone=search&cid=271459.
  • [15] C.A. Gueymard, Analysis of monthly average atmospheric precipitable waterand turbidity in Canada and Northern United States, Sol. Energy 53 (1994)57–71, http://dx.doi.org/10.1016/S0038-092X(94)90606-8.
  • [16] C.A. Gueymard, Turbidity determination from broadband irradiancemeasurements: a detailed multicoefficient approach, J. Appl. Meteorol. 37(1998) 414–435, http:// dx.doi.org/10.1175/1520-0450(1998)037<0414:TDFBIM>2.0.CO;2.
  • [17] T.˙Zdanowicz, Materials XII Optoelectronics School 22-24.05.1997, KazimierzDolny, Poland, 1997, pp. 159.
  • [18] D. Berman, D. Faiman, EVA browning and the time-dependence of I-V curveparameters on PV modules with and without mirror-enhancement in a desertenvironment, Sol. Energy Mater. Sol. Cells 45 (1997) 401–412 https://www.sciencedirect.com/search?pub=Solar%20Energy%20Materials%20and%20Solar%20Cells&volume=45&page=401&show=25&sortBy=relevance&origin=jrnlhome&zone=search&cid=271495.
  • [19] T. Żdanowicz, T. Rodziewicz, M. Wacławek, Effect of air mass factor on theperformance of different type of PV modules, 3RdWorld ConferenceonPhotovoltaic Energy Convers (2003) http://www.pvsc-proceedings.org/.
  • [20] ANSI/ASTM E1362-99: Test Method for Calibration of Non- ConcentratorPhotovoltaic Secondary Reference Cells (revision of ANSI/ASTM E1362-95) -December 7, 1999 https://infostore.saiglobal.com/en-gb/Standards/ASTM-E1362-99-983025/.
  • [21] ANSI/ASTM E1125-99: Standard Test Method for Calibration of PrimaryNon-Concentrator Terrestrial Photovoltaic Reference Cells Using a TabularSpectrum. American Society for Testing and Materials, 100 Barr Harbor Drive,West Conshohocken, PA 19428-2959, USA, 1999, https://infostore.saiglobal.com/en-gb/Standards/ASTM-E1125-99-982848/ https://reference.globalspec.com/standard/3862597/astm-e1125-16.
  • [22] NASA TM 73702: Terrestrial Photovoltaic Measurement Procedures, TM 73702, NASA, 1977 https://www2.jpl.nasa.gov/adv tech/photovol/2016CTR/LeRC%20-%20Terr%20PV%20Meas%20Proc 1977.pdf.
  • [23] R.L. Mueller, The calculated influence of atmospheric conditions on solar cellISC under direct and global solar irradiances, Nineteenth IEEE PhotovoltaicSpecialists Conference, Proc (1987) 166–170 http://www.pvsc-proceedings.org/.
  • [24] ASTM E1039-99: Standard Test Method for Calibration of SiliconNon-Concentrator Photovoltaic Primary Reference Cells Under GlobalIrradiation(revision of ANSI/ASTM E1039-94) (Withdrawn 2004), ASTMInternational, West Conshohocken, PA, 1999 https://www.astm.org/Standards/E1039.htm.
  • [25] R.J. Matson, K.A. Emery, R.E. Bird, Solar cells. Their science, Technol. Appl.Econ. 11 (1984) 105–145.
  • [26] W. Keogh, A.W. Blakers, Progress in photovoltaics, Res. Appl. 12 (2004) 1–19,http://dx.doi.org/10.1002/pip.517.
  • [27] A. Ångström, Techniques of determining the turbidity of the atmosphere,Tellus 13 (1961) 214–223, http://dx.doi.org/10.1111/j.2153-3490.1961.tb00078.x.
  • [28] C. Gueymard, F. Vignola, Determination of atmospheric turbidity from thediffuse-beam broadband. Irradiance ratio, Sol. Energy 63 (1998) 135–146https://www.sciencedirect.com/search?pub=Solar%20Energy&cid=271459&volume=63&page=135&show=25&sortBy=relevance.
  • [29] F. Kasten, A simple parameterization of the pyrheliometric formula fordetermining the Linke turbidity factor, Meteor. Rundschau 33 (1980)124–127 https://www.researchgate.net/publication/284652643 A simpleparameterization of the pyrheliometric formula for determining the Linketurbidity factor.
  • [30] F. Kasten, The Linke turbidity factor based on improved values of the integralRayleigh optical thickness, Sol. Energy 56 (1996) 239–244 https://www.sciencedirect.com/search?pub=Solar%20Energy&cid=271459&volume=56&page=239&show=25&sortBy=relevance.
  • [31] C.A. Gueymard, Assessment of the accuracy and computing speed ofsimplified saturation vapor equations using a new reference dataset, J. Appl.Meteorol. Climatol. 32 (1993) 1294–1300.
  • [32] C. Gueymard, J.D. Garrison, Critical evaluation of precipitable water andatmospheric turbidity in Canada using measured hourly solar irradiance, Sol.Energy 62 (1998) 291–307 https://www.sciencedirect.com/search?pub=Solar%20Energy&cid=271459&volume=62&page=291&show=25&sortBy=relevance.
  • [33] M. Krawczynski, M.B. Strobel, C.J. Hibberd, T.R. Betts, R. Gottschalg, Proc. 25thEU PVSEC, 2010, pp. 4710–4714 https://www.eupvsec-proceedings.com/.
  • [34] T. Minemoto, M. Toda, S. Nagae, M. Gotoh, A. Nakajima, K. Yamamoto, H.Takakura, Y. Hamakawa, Effect of spectral irradiance distribution on theoutdoor performance of amorphous Si//thin-film crystalline Si stackedphotovoltaic modules, Sol. Energy Mater. Sol. Cells 91 (2007) 120–122, http://dx.doi.org/10.1016/j.solmat.2006.07.014.
  • [35] Kipp & Zonnen: http://www.kippzonen.com/.
  • [36] Kipp, Zonnen, Instruction Manual CM 21. Precision Pyranometr, 2019, pp. 17http://www.kippzonen.com/.
  • [37] C. Gueymard, SMARTS Code, Version 2.9.2, USER’S MANUAL, Solar ConsultingServices, 2005 https://rredc.nrel.gov/solar/models/smarts/relatedrefs/smarts295 users manual pc.pdf.
  • [38] G. TamizhMani, K. Paghasian, J. Kuitche, M. Gupta, G. Sivasubramanian,Photovoltaic module power rating per IEC 61853-1 standard – a study undernatural sunlight, Solar ABCs Study Report (2011), March 2011 www.solarABCs.org http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP ORGID:1276.
  • [39] IEC 61 724.: Photovoltaic System Performance Monitoring - Guidelines forMeasurement, Data Exchange and Analysis, EC, Geneva, 1998 http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP ORG ID:1276.
  • [40] C.N. Long, T.P. Ackerman, K.L. Gaustad, J.N.S. Cole, Estimation of fractional skycover from broadband shortwave radiometer measurements, J. Geophys. Res.111 (2006), D11204, http://dx.doi.org/10.1029/2005JD006475.
  • [41] IEC 60904-2, 2nd Edition, 2006.: International Electrotechnical Commission,Requirements for Reference Solar Devices, Geneva, 2006 http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP ORG ID:1276.
  • [42] IEC 60 904-6, 2ndEdition, 2006.: Requirements for Reference Solar Modules,Geneva, 2006 http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP ORGID:1276.
  • [43] IEC 60 904-1.: Photovoltaic Devices - Part 1: Measurement of PhotovoltaicCurrent-voltage Characteristics, IEC, Geneva, 1987 http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP ORG ID:1276.
  • [44] IEC 60 891, 3ndEdition, 2017.: Photovoltaic Devices - Procedures forTemperature and Irradiance Corrections to Measured I-V Characteristics Geneva, 2017 http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP ORGID:1276.
  • [45] IEC 60 904-10, 2ndEdition, 2006.: Methods of Linearity Measurement, Geneva,2006 http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP ORG ID:1276.
  • [46] S. Corrs, M. Böhm, Validation and comparison of curve correction proceduresfor silicon solar cells, Proc 13thPVSEC (1995) https://www.eupvsec-proceedings.com/.
  • [47] Y. Tsuno, Y. Hishikawa, K. Kurokawa, Temperature and IrradianceDependence of the I-V Curves of Various Kinds of Solar Cells, Technical Digestof the PVSEC 15, Shanghai, 2005, pp. 422.
  • [48] IEC 60 904-5, 2ndEdition 2006.: Determination of Equivalent CellTemperature (ECT)of Photovoltaic (PV) Devices by the Open-circuit VoltageMethod, Geneva, 2006 http://www.iec.ch/dyn/www/f?p=103:23:0::::FSPORG ID:1276.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f507f71-ad9c-4898-ac40-16bd30f28c0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.