PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detekcja i klasyfikacja pojazdów z wykorzystaniem cyfrowego przetwarzania strumienia wideo dla systemów sterowania ruchem drogowym

Autorzy
Identyfikatory
Warianty tytułu
EN
Detection and classification of vehicles using image processing of video stream for road traffic control systems
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono opracowanie zagadnienia identyfikacji stanu ruchu z wykorzystaniem kamer dla potrzeb sterowania. Ograniczono dziedzinę opracowania do sprzętowych rozwiązań cyfrowego przetwarzania strumienia wideo, opartych na układach logicznych. Sprzętowe rozwiązania charakteryzują się dużą niezawodnością działania, która jest niezwykle istotna dla systemów sterowania.Określono model zadania sterowania i na tej podstawie wyznaczono wymagania dla identyfikacji stanu obiektu sterowania. Przygotowany model umożliwia reprezentację sterowania na poziomie lokalnym, jak i sterowania obszarowego. Przedstawiono elementy określania wrażliwości sterowania na zmiany parametrów opisu. Wykonano przegląd własności systemów sterowania lokalnych i obszarowych, eksponując stosowane metody wykorzystania danych pomiarowych. Dla przykładu znanego algorytmu sterowania przeprowadzono analizę wrażliwości na błędy identyfikacji obiektu sterowania. Uzyskane wyniki można odnieść do innych algorytmów korzystających z analogicznego postępowania optymalizacyjnego. Podsumowano wymagania pomiarowe znanych sterowników sygnalizacji świetlnej. Przeprowadzono dyskusję własności technik pomiarowych. Szczególną uwagę poświęcono technikom wideodetekcji. Zaprezentowano zasady działania znanych rozwiązań układów wideodetekcji, wskazując na ich własności. Przedstawiono autorską koncepcję klasy algorytmów przetwarzania strumienia wideo opartych na wykorzystaniu cech punktowych do identyfikacji stanu ruchu. Określono ograniczenia implementacyjne wynikające ze sformułowanych założeń i wymagań algorytmów przetwarzania. Na podstawie analizy ograniczeń zaproponowana została oryginalna platforma sprzętowa rozwiązania wideodetektora i własna koncepcja opisu organizacji przetwarzania. Przedstawiono autorską metodę dekompozycji algorytmów przetwarzania oraz szczegółowo opisano etapy metody. Opracowano specjalizowane moduły przetwarzania i zaprezentowano model wideodetektora przygotowany z wykorzystaniem opracowanej metody.Korzystając z danych uzyskanych z drogowych stanowisk pomiarowych, gdzie zainstalowano wyprodukowane wideodetektory, przeprowadzono analizę własności pomiarowych opracowanych rozwiązań. Jako wzorcowe użyto dane: uzyskane z równolegle działających pętli indukcyjnych i odczytane z zarejestrowanych filmów. Przedstawiono propozycję wykorzystania transformatowej reprezentacji strumienia wideo do określania gęstości ruchu drogowego. Takie podejście do pomiarów nasuwa pomysł wykorzystania kamer sieciowych - intensywnie korzystających z kompresji transformatowej, do identyfikacji stanu ruchu dla sterowania. Przeprowadzono dyskusję własnosci kamer sieciowych dla zastosowań w sterowaniu. Zaproponowane rozwiązanie może być wykorzystane jako podstawa konstrukcji autonomicznych stanowisk pomiarowych dla budowanych systemów ITS.
EN
The paper presents a study ofthe problem of traffic state identification using video cameras for road traffic control. The scope of the study is limited to hardware solutions of digital image processing devices based on logic gate circuits. Such hardware solutions are robust and highly reliable, which is crucial for road traffic control systems. A model of the traffic control task is elaborated and on its basis, requirements for identification of the controlled object are derived. The elaborated model enables specification of local control conditions as well as control conditions in a network of roads. A review of the sensitivity of control functions to the change of traffic state description parameters is given. The review emphasizes features of methods for acquiring road traffic measurements. A discussion of the sensitivity of stateidentification to measurement errors is made for the case of a commonly used algorithm for local control. The conclusions of this discussion can be related also to other control algorithms which use similar optimisation principles. A summary of traffic measurement requirements of traffic controllers from leading manufacturers is presented. A discussion of traffic parameters measurement techniques is presented with special stress put on video based detection. Principles of operation of prominent solutions of video detectors are analysed. The results ofthe discussion contribute to the author's concept of a class of processing algorithms using feature points for traffic state identification. The concept of the class is further specified by defining implementation restrictions which meet the demands of efficient and reliable hardware processing solutions. On the basis of this concept, a hardware platform and a method of description of processing tasks are devised. The method is based on decomposition of algorithms into modules suitable for working in a processing pipeline. Specialised modules are elaborated and a model of a video detector is prepared and validated. The video detector is produced and installed on a number of traffic junctions. Traffic data were collected at several sites and analysed for measurement errors. Reference data were obtained from inductive loop detectors and video registering devices. The paper ends with a proposition of applying video stream transform description (3D wavelet) for evaluating the density of road traffic. This approach to the measurement of traffic parameters suggests the use of network cameras - that intensively use transform based compression for identification of the traffic states. The proposed solution may be incorporated in autonomous measurement sites which are part of ITS (Intelligent Transport Systems).
Rocznik
Tom
Strony
3--109
Opis fizyczny
Bibliogr. 174 poz., rys., tab., wykr.
Twórcy
autor
  • Politechnika Śląska, Wydział Transportu
Bibliografia
  • [1] A Summary of Vehicle Detection and Surveillance Technologies used in Intelligent Transportation Systems, FHWA Washington 2007
  • [2] Aboudolas K., Papageorgiou M., Kosmatopoulos E.: Store-and-forward based methods for the signal control problem in large-scale congested urban road networks, Transportation Research Part C, vol. 17, pp. 163-174, 2009
  • [3] Acharya T., Chakrabarti C.: A survey on lifting-based discrete wavelet transform architectures, J. VLSI Signal Process., vol. 42, pp. 321-339, 2006
  • [4] Adamski A.: Inteligentne systemy transportowe: sterowanie, nadzór i zarządzanie, AGH, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków 2003
  • [5] Adaptive Traffic Control Systems: Domestic and Foreign State of Practice, Transportation Research Board, Washington 2010
  • [6] Adaptive Traffic Control Systems: Domestic and Foreign State of Practice NCHRP Synthesis 403, Transportation Research Board, Washington 2010
  • [7] Ahmad A., Krill B., Amira A., Rabah H.: Efficient architectures for 3D HWT using dynamic partial reconfiguration. Journal of Systems Architecture, vol. 56, pp. 305-316, 2010
  • [8] Al-Mudhaffar A.: Impacts of Traffic Signal Control Strategies, Doctoral Thesis in Traffic and Transport Planning, Infrastructure and Planning Royal Institute of Technology Stockholm, Sweden 2006
  • [9] Altera Product Catalog. Altera Co. San Jose, CA USA, 2009
  • [10] Altera's User-Customizable ARM-Based SoC FPGAs, Altera Co, 2012, http://www.altera.com/literature/br/br-soc-fpga.pdf
  • [11] Andreopoulos Y., Munteanu A., Van der Auwera G., Cornelis J.P.H., Schelkens P.: Complete-to-Overcomplete Discrete Wavelet Transforms: Theory and Applications, IEEE Transactions on Signal Processing, vol. 53, pp. 1398-1412, 2005
  • [12] ASTERit Akomodacyjny Sterownik Sygnalizacji Ulicznej, Zakład Elektroniki i Automatyki Przemysłowej A-STER, Kraków 2011
  • [13] Baradarani A, Wu Q.M.J.: Wavelet-based Moving Object Segmentation from Scalar Wavelets to Dualtree Complex Filter Banks in Pattern Recognition Recent Advances ed. Herout A. In-Tech, pp. 151-165, 2010
  • [14] Batcher K.E.: Sorting Networks and Their Applications, Spring Joint Computer Conf., AFIPS Proc., vol. 32, pp. 307-314, 1968
  • [15] Battle J., Marti J., Ridao P., Amar J.: New FPGA/DSP - Based Parallel Architecture for Real-Time Image Processing, Real Time Imaging, vol. 8, pp. 345-356, 2002
  • [16] Baumann D., Tinembart J.: Designing Mathematical Morphology Algorithms on FPGA: An Application to Image Processing LNCS 3691, pp. 562-569, 2005
  • [17] Benitez D.: Performance of Recongurable Architectures for Image-Procesing Applications, Journal of Systems Architecture, vol. 49, pp. 193-210, 2003
  • [18] Benkrid K., Benkrid A., Belkacemi S.: Efficient FPGA hardware development: A multi-language approach, Journal of Systems Architecture, vol. 53, pp. 184-209, 2007
  • [19] Bertsekas D.P.: Dynamic Programming and Optimal Control, volumes 1 and 2, Athena Scientific, Belmont, Massachusetts USA, 1995
  • [20] Beun R., Karkowski I., Ditzel M.: C++ Based Design Flow for Reconfigurable Image Processing Systems, International Conference Field Programmable Logic and Applications FPL 2007, pp. 571-575, 2007
  • [21] Beun R., Karkowski I.. Ditzel M.: C++ Based Design Flow for Recongurable Image Processing Systems International Conference on Field Programmable Logic and Applications, IEEE Computer Society, pp. 571-575, 2007
  • [22] Biała księga "Plan utworzenia jednolitego europejskiego obszaru transportu - dążenie do osiągnięcia konkurencyjnego i zasobooszczędnego systemu transportu", KE Bruksela, 28 marca 2011
  • [23] Bielli M., Reverberi P.: New Operations Research and Artificial Intelligence approaches to traffic engineering problems, European Journal of Opeartional Research, vol. 92, pp. 550-572, 1996
  • [24] Boluda J.A, Pardo F.: A reconfigurable architecture for autonomous visual navigation, Machine Vision and Application, vol. 13, pp. 322-331, 2003
  • [25] Brosch O., Hesser C., Hinkelbein C. et al.: ATLANTIS - A Hybrid FPGA/RISC Based Reconfigurable System, LNCS 1800, pp. 890-897, 2000
  • [26] Buch N., Velastin S.A., Orwell J.: A Review of Computer Vision Techniques for the Analysis of Urban Traffic, IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 3, pp. 920-939, 2011
  • [27] Calderbank A.R., Daubechies I., Sweldens W.: Wavelet Transforms that Map Integers to Integers. Applied and Computational Harmonic Analysis, vol. 5, pp. 332-369, 1998
  • [28] Camps O.I., T. Kanungo and R.M. Haralick. Grey-scale structuring element decomposition. IEEE Transactions on Image Processing, vol. 5, pp. 111-120, 1996
  • [29] Chan K., Saltelli A., Tarantola S.: Sensitivity analysis of model output: variance-based methods make the difference, in: Proceedings of the 1997 Winter Simulation Conference, pp. 261-8, 1997
  • [30] Chan K., Tarantola S., Saltelli A., Sobol M.: Variance-based methods, in: Saltelli A., Chan K., Scott E. M. editors. Sensitivity analysis. West Sussex, UK: Wiley, pp. 167-97, 2000
  • [31] Cheng F-H., Chen Y-L.: Real time multiple objects tracking and identification based on discrete wavelet transform. Pattern Recognition, vol. 39, pp. 1126-1139, 2006
  • [32] Chitturi M.V., Medina J.C., Benekohal R.F.: Effect of shadows and time of day on performance of video detection systems at signalized intersections, Transportation Research Part C, vol. 18, pp. 176-186, 2010
  • [33] Chow A.H.F., Hong K., Lo H.K: Sensitivity analysis of signal control with physical queuing: Delay derivatives and an application, Transportation Research Part B, vol. 41, pp. 462-477, 2007
  • [34] Chunchua M., Kalagab R.R., Seethepallic K.: Analysis of microscopic data under heterogeneous traffic conditions, Transport Volume 25, Issue 3, pp. 262-268, 2010
  • [35] Claus C., Huitl R., Rausch J., Stechele W.: Optimizing The SUSAN Corner Detection Algorithm for a High Speed FPGA Implementation, International Conference on Field Programmabie Logic and Applications, IEEE Computer Society, pp. 138-145, 2009
  • [36] Clausen J.: Branch and Bound Algorithms by principles and examples, University of Copenhagen, Denmark, 2003
  • [37] Crabtree M.R., Henderson I.R., Drury R.D.: MOVA Traffic Control Manual. Application Guide 44, 45, Transport Research Laboratory 2009
  • [38] Cucchiara R., Di Stefano L., Piccardi M., Salmon Cinotti T.: The GIOTTO system: a parallel computer for image processing, Real Time Imaging, vol. 3, pp. 342-353, 1998
  • [39] Cukier R.I., Fortuin C.M., Shuler K.E., Petschek A.G., Schaibly J.H.: Study of the sensitivity of coupled reaction system to uncertainties in rate coefficients. theory. J. Chem. Phys., vol. 59, no. 8, pp. 3873-3878, 1973
  • [40] Cyran K.A., Niedziela T.: Automatic recognition of the type of road vehicles with the use of optimised ring-wedge detector and neural network, Archiwum Transportu, vol. 18, nr 3, s. 23-36, 2006
  • [41] Cyran K.A., Niedziela T.: Opto-electronic method of pattern recognition of motor vehicles in spatial frequency domain, Archives of Transport, vol. 21, iss. 1-2, pp. 27-47, 2009
  • [42] Cyran K.A.: Recognition of the type of vehicle and the road obstacle in optimized HRWD-PNN based image processing system, Proceedings of the 10th WSEAS International Conference on Systems, World Scientific and Engineering Academy and Society, pp. 657-662, 2006
  • [43] Czapla Z., Pamuła T., Pamuła W.: System rejestracji i przetwarzania obrazu cyfrowego zdarzeń drogowych, Zeszyty Naukowe Politechniki Śląskiej Seria Transport nr 44, Gliwice, s. 158-165, 2002
  • [44] Daubechies I., Sweldens W.: Factoring wavelet transforms into lifting steps, J. Fourier Anal. Appl., vol. 4, pp. 247-269, 1998
  • [45] Detektor wizyjny GENEO-VISION, Zakład Elektroniki i Automatyki TECHVISION, Tarnobrzeg 2010
  • [46] Dokumentacja techniczno-ruchowa sterownika sygnalizacji świetlnej ASR-2010PL(ITC-2B), Zakład Inżynierii Ruchu - Systemy Sterowania Ruchem, Bytom 2012
  • [47] Dotoli M., Pia Fanti M., Meloni C.: A signal timing plan formulation for urban traffic control, Control Engineering Practice 14, pp. 1297-1311, 2006
  • [48] Dyrektywa Parlamentu Europejskiego i Rady 2010/40/UE z dnia 7 lipca 2010 r. w sprawie ram wdrażania inteligentnych systemów transportowych w obszarze transportu drogowego oraz interfejsów z innymi rodzajami transportu, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:207:0001:0013:PL:PDF
  • [49] Evaluation of Non-intrusive Technologies for Traffic Detection. Evaluation Test Plan, MnDOT and SRF Consulting Group Inc., vol. 1. Minneapolis, MN. 2001
  • [50] Fastenrath U.: Floating Car Data on a Larger Scale, DDG Gesellschaft für Verkehrsdaten mbH, pp. 1-10, Düsseldorf 2009
  • [51] Gaca S., Suchorzewski W., Tracz M.: Inżynieria ruchu drogowego. Teoria i praktyka. WKŁ, Warszawa 2008
  • [52] Gajda J., Sroka R., Stencel M., Żegleń T., Burnos P., Piwowar P.: Pomiary parametrów ruchu drogowego, Wydawnictwa AGH, 2012
  • [53] Gartner N.H., Pooran F.J., Andrews C.M.: Implementation of the OPAC Adaptive Control Strategy in a Traffic Signal Network IEEE ITS Conference Proceedings, 2001
  • [54] Gartner N.R, Stamatiadis Ch., Zhou C.S.: Outline of the VFC-OPAC Model. Report prepared for RT-TRACS Project, UMass-Lowell, May 1996
  • [55] Gorgoń M., Jabłoński M.: Handel-C implementation of Classical Component Labelling Algorithm, Proceedings ofthe EUROMICRO Systems on Digital System Design (DSD'04), IEEE Computer Society Press, pp. 387-393, 2004
  • [56] Gorgoń M., Kryjak T.: Real-time implementation of moving object detection in video surveillance systems using FPGA, Computer Science, Wydawnictwa AGH, vol. 12, pp. 149-162, 2011
  • [57] Gorgoń M., Pawlik P., Jabłoński M., Przybyło J.: FPGA-based Road Traffic Videodetector, in Proc. 12th Euromicro Conf. on Digital System Design, Architectures, Methods and Tools (DSD '09), Luebeck, Germany, Aug. 2009
  • [58] Gorgoń M., Pawlik P., Jabłoński M., Przybyło J.: FPGA-based Road Traffic Video detector, 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007), IEEE Computer Society Press, pp. 412-419, 2007
  • [59] Grotker T., Liao S., Martin G., Swan S.: System Design with SystemC, Kluwer Academic Publishers, 2005
  • [60] Harris C., Stephens M.: A combined corner and edge detector. Proc. of the 4th ALVEY Conference, pp. 147-151, 1988
  • [61] Heygster G.: Rank filters in digital image processing, Computer Graphics and Image Processing, vol. 19, Issue 2, pp. 148-164, 1982
  • [62] Idet 2000 Datasheet, Sumitomo Electric Japonia 2008
  • [63] Jóźwiak L., Nedjah N., Figueroa M.: Modern development methods and tools for embedded reconfigurable systems: A survey, Integration, The VLSI Journal, vol. 43, pp. 1-33, 2010
  • [64] K. Coffman, Real Word FPGA Design with Verilog, Prentice-Hall, 2000
  • [65] Kalinke T., Tzomakas C., Seelen W.: A Texture-Based Object Detection and an Adaptive Model-Based Classification, Proc. IEEE Int. Conf. Intelligent Vehicles, pp. 143-148, 1998
  • [66] Kastrinaki V., Zervakis M., Kalaitzakis K.: A survey of video processing techniques for traffic applications, Image and Vision Computing, vol. 21, pp. 359-381, 2003
  • [67] Kawalec P., Sobieszuk-Durka S.: Metody i algorytmy obszarowego sterowania ruchem drogowym, Oficyna Wydawnicza Politechniki Warszawskiej, Prace Naukowe Transport, z. 80, s. 21-47, Warszawa, 2009
  • [68] Kawalec P., Firląg K.: Synteza specjalizowanych układów sterowania ruchem drogowym w strukturach FPGA. Pomiary Automatyka Kontrola, 7bis 2006, Agenda Wydawnicza Stowarzyszenia SIMP, Warszawa, s. 8-10
  • [69] Kawalec P.: Analiza i synteza specjalizowanych układów modelowania i sterowania ruchem w transporcie. Oficyna Wydawnicza Politechniki Warszawskiej, Prace Naukowe Transport, z. 68, Warszawa, 2009
  • [70] Kawalec P., Strzałkowski T.: Zastosowanie języków opisu sprzętu do specyfikacji układów detekcji pojazdów w ruchu drogowym, Oficyna Wydawnicza Politechniki Warszawskiej, Prace Naukowe Transport, z. 45, s. 42-56, Warszawa 2009
  • [71] Kerner B.S.: Introduction to Modern Traffic Flow Theory and Control, Springer-Verlag, Berlin 2009
  • [72] Kessal L., Abel N., Demigny D.: Real time Image Processing with Dynamically Reconfigurable Architecture, Real Time Imaging, vol. 9, pp 297-313, 2003
  • [73] Kessal L., Abel N., Karabernou S.M., Demigny D.: Recongurable Computing: Design Methodology and Hardware Tasks Scheduling for Real-Time Image Processing, Journal Real-Time Image Proc., vol. 3, pp. 131-147, 2008
  • [74] Krysicki W., Bartos J., Dyczka W., Królikowska K., Wasilewski M.: Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, część 2. Statystyka matematyczna. PWN, Warszawa 2006
  • [75] Kucherenko S., Feil B., Shah N., Mauntz W.: The identification of model effective dimensions using global sensitivity analysis, Reliability Engineering and System Safety, Elsevier, vol. 96, pp. 440-449, 2011
  • [76] Laganière R.: A Morphological Operator For Corner Detection, Pattern Recognition, vol. 31, Issue 11, pp. 1643-1652, 1998
  • [77] Leduc G.: Road Traffic Data: Collection Methods and Applications, European Commission, Joint Research Centre Institute for Prospective Technological Studies Luxemburg 2008
  • [78] LHOVRA, A Traffic Signal Control Strategy for Isolated Junctions. Swedish Road Administration SRA(VV), Publication 1991:51E, Sweden, 1991
  • [79] Li J., Allinson N.M.: A comprehensive review of current local features for computer Visio, Visio Neurocomputing, vol. 71, pp. 1771-1787, 2008
  • [80] Liszka K.J., Batcher K.E.: A Generalized Bitonic Sorting Network, Proceedings of the International Conference on Parallel Processing, pp. 105-108, 1993
  • [81] Lowe D.G.: Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004
  • [82] Maerivoet S., De Moor B.: Traffic Flow Theory, Katholieke Universiteit Leuven 2005 (ftp.esat.kuleuven.be: pub/sista/smaerivo/reports/paper-05-.pdf)
  • [83] Malinowski M.: Metody morfologiczne w przetwarzaniu obrazów cyfrowych, Akademicka Oficyna Wydawnicza EXIT, Warszawa 2009
  • [84] Mallat S.: A theory for multiresolution signal decomposition: The wavelet representation, IEEE Trans. on Patt. Anal. and Mach. Intell., vol. 11, no 7, pp. 674-693, 1989
  • [85] Manual on Uniform Traffic Control Devices (MUTCD), US Department of Transport, Federal Highway Administration, Washington 2009
  • [86] Mauro V., Taranto C. Di: UTOPIA. In: J.P. Perrin (ed), IFAC Control, Computers, Communications in Transportation, pp. 575-597, Paris 1989
  • [87] Mauro V.: UTOPIA Urban Traffic Control Main Concepts. EU-China ITS Workshop Beijing, China, 18-19 April 2002
  • [88] MediaTD brochure, Citilog SA Paryż 2010
  • [89] Medina J.C., Benekohal R.F., Chitturi M.V.: Evaluation of Video Detection Systems - Effects of Configuration Changes in the Performance of Video Detection Systems, vol. 1. Illinois Center for Transportation, Rep. FHWA-ICT-08-024, 2008
  • [90] Medina J.C., Benekohal R.F., Chitturi M.V: Evaluation of Video Detection Systems - Effects of Illumination Conditions in the Performance of Video Detection Systems, vol. 2. Illinois Center for Transportation, Rep. FHWA-ICT-09-46, 2009
  • [91] Michalopoulos P.G., Fundakowski R.A., Geokezas M., Fitch R.C.: Vehicle detection through image processing for traffic surveilance and control, patent US 4847772, 1989
  • [92] Michalopoulos P.G.: Vehicle detection video through image processing: the autoscope system, IEEE Transactions on Vehicular Technology, vol. 40, pp. 21-29, 1991
  • [93] Miller A.J.: A computer control system for traffic networks. Proceedings of the Second International Symposium on Transportation and Traffic Theory (ed. J. Almond), Paris: OECD, pp. 200-220, 1963
  • [94] Miller A.J.: Settings for Fixed-Cycle Traffic Signals. Operations Research Quarterly, vol. 14, no. 4, pp. 376-386, 1963
  • [95] Monograph on Traffic Flow Theory (revised), US Department of Transport, Federal Highway Administration, Washington 2006
  • [96] Moravec H.: Towards automatic visual obstacle avoidance, in: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 584-592, 1977
  • [97] Muthukumar V., Rao D.V.: Image Processing Algorithms on Recongurable Architecture Using HandelC, Proceedings of the 7th Euromicro Conference on Digital Systems Design, IEEE Computer Society, pp. 362-370, 2004
  • [98] Naegel B., Passat N., Ronse B.: Grey-level hit-or-miss transforms Part I: Unified theory, Pattern Recognition, vol. 40, pp. 635-647, 2007
  • [99] NEMA TS 2 traffic controller assemblies with NTCIP requirements version 02.06 (R2008) National Electrical Manufacturers Association, 2012
  • [100] Newell G.F.: Approximation methods for queues with applications to the fixed-cycle traffic light, SIAM Rev., vol. 7, no. 2, pp. 223-240, 1965
  • [101] Newell G.F.: The rolling horizon scheme of traffic control. Transportation Research Part A32, pp 39-44, 1998
  • [102] Nieniewski M.: Morfologia matematyczna w przetwarzaniu obrazów, Akademicka Oficyna Wydawnicza, Warszawa 1998
  • [103] Noble J.A.: Finding corners. Image and Vision Computing, vol. 6, pp. 121-128, 1988
  • [104] NTCIP 1209 version v02.17, Object Definitions for Transportation Sensor Systems (TSS), AASHTO, ITE, NEMA 2010
  • [105] Oh J., Leonard J.: Vehicle Detection Using Video Image Processing System: Evaluation of PEEK VideoTrak, J. Transp. Eng., vol. 129 (4), pp. 462-465, 2003
  • [106] Pamuła W.: Performance of video detectors working with lossy compressed video streams, Archives of Transport Systems Telematics, vol. 5, iss.1., pp. 22-28, 2012
  • [107] Pamuła W.: Wavelet-based data reduction for detection of moving objects, Machine Graphics and Vision, Institute of Computer Science Polish Academy of Sciences, vol. 20, pp. 67-78, 2011
  • [108] Pamuła D., Ziębiński A.: Securing video stream captured in real time. Przegląd Elektrotechniczny, vol. 86, nr 9, s. 167-169, 2010
  • [109] Pamuła W., Balcer R.: Exploitation remarks to road traffic video cameras field testing, Transactions on Transport Systems Telematics, ed. J. Piecha, rozdz. 3.2., Wyd. Pol. Śląskiej ISBN 83-7335-341-0, s. 121-130. Gliwice 2006
  • [110] Pamuła W., Piąstka K.: Dekompozycja algorytmu rejestracji zdarzeń drogowych na procedury realizowane potokowo. w: Telematyka i bezpieczeństwo transportu. TiBT'06 VI Konferencja, Katowice, 12-13 października 2006 r. [Dokument elektroniczny]. T. 1: Telematyka transportu. Red. Jan Piecha. Katowice: Wyd. Katedry Systemów Informatycznych Transportu, 2006, dysk optyczny (CD-ROM) s. 48-58, 2006
  • [111] Pamuła W.: A Processing Pipeline for Vehicle Detection in a Sequence of Images, Conference proceedings Kraków ITS_ ILS_2007, AGH, pp. 216-225, 2007
  • [112] Pamuła W.: Advantages of Using Space Filling Curve for Computing Wavelet Transforms of Road Traffic Images, International Conference on Image Analysis and Processing, Mantova, IEEE Computer Society Press, pp. 614-620, 2003
  • [113] Pamuła W.: An integrated architecture of a traffic video detector, Transactions on Transport Systems Telematics ed. J. Piecha, Wyd. Pol. Sl. Gliwice s.104-113, 2006
  • [114] Pamuła W.: Metoda dekompozycji algorytmów przetwarzania obrazów dla implementacji w układach FPGA, Pomiary, Automatyka, Kontrola, vol. 57, nr 6, s. 648-652, 2011
  • [115] Pamuła W.: Metody optymalizacji wykorzystywane przez miejskie systemy sterowania ruchem, Logistyka nr 3, s. 2157-2168 (CDROM), 2011
  • [116] Pamuła W.: Object Classification Methods for Aplication in FPGABased Vehicle Video Detector, Transport Problems, Wyd. Pol. Śląskiej, pp. 5-14, 2009
  • [117] Pamuła W.: Projekt układu elektronicznego i mechanicznego rozwiązania wideodetektora WD-PM, Sprawozdanie z pracy badawczej o symbolu 512/11/475/06/FS-11 "Moduły wideodetektorów pojazdów ZIR-WD do sterowania i nadzoru ruchu drogowego" umowa POL/KTT/2006/1, projekt Nr WKP_1/1.4.1/1/2005/14/14/231/2005, Katowice 2006
  • [118] Pamuła W.: Vehicle Detection Algorithm for FPGA Based Implementation, in Computer Recognition Systems, Eds. M. Kurzyński, M. Woźniak, Springer Verlag, Berlin, pp. 586-592, 2009
  • [119] Pamuła W.: Determining Feature Points for Classification of Vehicles, Burduk et. al (eds) Computer Recognition Systems 4, AISC 95 Springer Verlag, pp. 677-684, 2011
  • [120] Papageorgiou M., Diakaki C., Dinopoulou V., Kotsialos A., Wang Y.: Review of Road Traffic Control Strategies, Proceedings of the IEEE, vol. 91, No. 12, 2003
  • [121] Petrou M., Sevilla P.G.: Image Processing: Dealing With Texture, Wiley 2006
  • [122] Płaczek B.: Sellective data collection in vehicular networks for traffic control applications, Transportation Research Part C, vol. 23, pp. 14-28, 2012
  • [123] Pomiary i badania ruchu drogowego, red. M.Tracz, Wydawnictwa Komunikacji i Łączności, Warszawa 1984
  • [124] Porter R., Frigo J., Gokhale M., Wolinski C., Charot F., Wagner C.: A Run-Time Recongurable Parametric Architecture for Local Neighbourhood Image Processing, Proceedings of the 9th Euromicro Conference on Digital Systems Design, IEEE Computer Society, pp. 362-370, 2006
  • [125] Porter R., Frigo J., Conti A., Harvey N., Kenyon G., Gokhale M.: A Reconfigurable Computing Framework for Multiscale Cellular Image Processing, Microprocessors and Microsystems, vol. 31, pp. 546-563, 2007
  • [126] R.T. van Katwijk, B. de Schutter, Hellendoorn J.: Look-ahead traffic-adaptive signal control. Technical Report 07-020, Delft University of Technology 2007
  • [127] R.T. van Katwijk, B. De Schutter, Hellendoorn J.: Traffic adaptive control of a single intersection: A taxonomy of approaches. In Proc. 11th IFAC Symposium on Control in Transportation Systems, pp. 227-232, Delft, The Netherlands, 2006
  • [128] Rahman S.: Global sensitivity analysis by polynomial dimensional decomposition, Reliability Engineering and System Safety, Elsevier, vol. 96, pp. 825-837, 2011
  • [129] Rao D.V, Patil S., Babu N.A., Muthukumar V.: Implementation and Evaluation of Image Processing Algorithms on Reconfigurable Architecture using C-based Hardware Descriptive Languages, International Journal of Theoretical and Applied Computer Sciences, vol. 1, pp. 9-34, 2006
  • [130] Raporty projektu: Moduły wideodetektorów ZIR WD dla sterowania i monitorowania ruchu drogowego. WKP-1/1.4.1/1/2005/14/14/231/2005, vol. 1-6, Katowice 2005-2007
  • [131] Rhodes A., Bullock D.M., Sturdevant J., Clark Z., Candey Jr. D.G.: Evaluation of the accuracy of stop bar video vehicle detection at signalized intersections, Transportation Research Record: Journal of the Transportation Research Board, vol. 1925, pp. 134-145, 2005
  • [132] Robertson D.I., Bretherton R.D.: Optimizing networks of traffic signals in real-time: the SCOOT method. IEEE Transactions on Vehicular Technology 40, pp. 11-15, 1991
  • [133] Rosten E., Drummond T.: Machine Learning for High-Speed Corner Detection, LNCS 3951, Springer-Verlag, pp. 430-443, 2006
  • [134] Salem M., Winkler F.: Concept for hardware implementation for the 3D wavelet trans form, Proceedings of the 4th Int. Conference on Intelligent Computing and Information Systems, Cairo, pp. 624-627, 2009
  • [135] Salomon D.: Data Compression, The Complete Reference. Springer Verlag, 2000
  • [136] Saltelli A., Annoni P., Azzini I., Campolongo F., Ratto M., Tarantola S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer Physics Communications, vol. 181, pp. 259-270, 2010
  • [137] Schmoecker J-D., Ahuja S., Bell M.G.H.: Multi-objective signal control of urban junctions - Framework and a London case study, Transportation Research Part C, vol. 16, pp. 454-470, 2008
  • [138] Seidler J., Badach A., Molisz W.: Metody rozwiązywania zadań optymalizacji, WNT, Warszawa 1980
  • [139] Shi G., Liu W., Zhang L., Li F.: An efficient folded architecture for lifting-based discrete wavelet transform, IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 56, pp. 290-294, 2009
  • [140] Sima D. et al.: Advanced Computer Architectures: A Design Space Approach, Addison Wesley, New York 1997
  • [141] Sims A.G., Dobinson K.W.: The Sydney Coordinated Adaptive Traffic (SCAT) System Philosophy and Benefits IEEE Transactions On Vehicular Technology, vol. Vt-29, No.2, pp. 130-137, 1980
  • [142] Skahill K., Język VHDL, Projektowanie programowalnych układów logicznych, WNT, 2001
  • [143] SmartFusion2 System-on-Chip FPGAs, Microsemi Co 2013, http://www.actel.com/documents/SmartFusion2_DS.pdf
  • [144] Smith S.M., Brady J.M.: SUSAN - a new approach to low level image processing, Int. J. Comput. Vis., vol. 23, pp. 45-78, 1997
  • [145] Sobol I.M.: Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Mathematics and Computer in Simulation, vol. 55, pp. 271-280, 2001
  • [146] Soille P.: On morphological operators based on rank filters, Pattern Recognition, vol. 35, pp. 527-535, 2002
  • [147] Srinivasan D., Choy M.C., Cheu R.L.: Neural Networks for Real-Time Traffic Signal Control, IEEE Transactions On Intelligent Transportation Systems, vol. 7, No.3, pp. 261-273, 2006
  • [148] Sterownik Sygnalizacji Świetlnej Geneo, Zakład Elektroniki i Automatyki TECHVISION, Tarnobrzeg 2010
  • [149] Sterownik sygnalizacji świetlnej MSR2002, MSR Traffic sp. z o.o. Przeźmierowo 2009
  • [150] Stybliński M.: Metody analizy i optymalizacji tolerancji parametrów układów elektronicznych, WNT, Warszawa 1981
  • [151] Tadeusiewicz R., Korohoda P.: Komputerowa analiza i przetwarzanie obrazów, Wydawnictwo Fundacji Postępu Telekomunikacji, Kraków 1997
  • [152] Torres-Huitzil C., Arias-Estrada M.: Configurable Hardware Architecture for Real-Time Window-Based Image Processing, LNCS 2778, pp. 1008-1011, 2003
  • [153] Torres-Huitzil, C., Arias-Estrada, M.: An FPGA Architecture for High Speed Edge and Corner Detection, Proceedings of the 5th IEEE International Workshop on Computer Architectures for Machine Perception, IEEE Computer Society, pp. 112-116, 2000
  • [154] Traffic Control Systems Handbook, Report No: FHWA-HOP-06-006, Waszyngton 2005
  • [155] Traffic Detector Handbook, III Edition vol. 1, FHWA-HRT-06-108, Federal Highway Administration, Washigton, 2006
  • [156] Traffic Detector Handbook, III Edition vol. 2, FHWA-HRT-06-139, Federal Highway Administration, Washigton, 2006
  • [157] TRAZER® (TRaffic AnalyZer and EnumeratoR) Datasheet, KritiKal Solutions plt, Delhi, Indie 2012
  • [158] Tuceryan M., Jain A.K.: Texture Analysis in The Handbook of Pattern Recognition and Computer Vision (2nd Edition), by C.H. Chen, L.F. Pau, P.S.P. Wang (eds.), pp. 207-248, World Scientific Publishing Co., 1998
  • [159] Van Bunnen B., Bogaert M., Versavel J.: A traffic monitoring device and method, patent EP 0 755 552 B1 7.04.1995
  • [160] Virtex-6, Spartan-6 Family Overview. Xilinx Inc. San Jose, CA USA, 2010
  • [161] Wan C.L., Dickinson K.W.: Road traffic monitoring using image processing - a survey of systems, techniques and applications, IFAC Control Computers, Communications in Transportation, Paris, France 1989
  • [162] Webster F.V.: Traffic signal settings, Road Research Technical Paper 39, Road Res. Lab., Ministry Transport, HMSO, London, U.K, pp. 1-43, 1958
  • [163] Weeks M., Bayoumi M.A.: Three-dimensional discrete wavelet transform architectures, IEEE Trans. on Signal Processing, vol. 50, pp. 2050-2063, 2002
  • [164] Wiatr K.: Akceleracja obliczeń w systemach wizyjnych, WNT, Warszawa 2003
  • [165] Wiatr K.: Pipe lined Architecture of Specialised Reconfigurable Processors in FPGA Structures for Real-Time Image Data Pre-Processing. Proc. of the EUROMICRO International Conference: Digital System Design: Architectures, Methods and Tools, Vasteras - Sweden 1998, IEEE Computer Society Press, pp. 131-138, 1998
  • [166] Wideodetektor ZIR-WD, Zakład Inżynierii Ruchu, Systemy Sterowania Ruchem Balcer i sp. Bytom 2008
  • [167] Wójcikowski M., Żaglewski R., Pankiewicz B.: FPGA-Based Real-Time Implementation of Detection Algorithm for Automatic Traffic Surveillance Sensor Network, Journal of Signal Processing Systems, DOI 10.1007/s11265-010-0569-3, 2011
  • [168] Wójcikowski M., Żaglewski R., Pankiewicz B., Kłosowski M., Szczepański S.: Hardware-Software Implementation of a Sensor Network for City Traffic Monitoring Using the FPGA- and ASIC-Based Sensor Nodes, Journal of Signal Processing Systems June 2012, (Open Access)
  • [169] Wójcikowski M., Żaglewski R., Pankiewicz B.: FPGA-based real-time implementation of detection algorithm for automatic traffic surveillance sensor network. Journal of Signal Processing Systems, vol. 68 (1), pp. 1-18, 2012
  • [170] Xu J., Subramanian N., Alessio A., Hauck S.: Impulse C vs. VHDL for Accelerating Tomographic Reconstruction, 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines, FCCM 2010, pp. 171-174, 2010
  • [171] Xua C., Gertner G.: Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST), Computational Statistics and Data Analysis, vol. 55, pp. 184-198, 2011
  • [172] Zhang C., Wang C., Ahmad M.O.: A pipeline VLSI architecture for high speed computation of the 1-D discrete wavelet trans form, IEEE Trans. on Circuits and Systems I, vol. 57, pp. 2729-2740, 2010
  • [173] Zhao D., Dai Y., Zhang Z.: Computational Intelligence in Urban Traffic Signal Control: A Survey, IEEE Transactions On Systems, Man, And Cybernetics-Part C: Applications And Reviews, vol. 42, No.4, pp. 485-494, 2012
  • [174] Zynq-7000 All Programmable SoC Overview, Xilinx Inc 2012, http://www.xilinx.com/support/documentation/data_sheets/ ds190-Zynq-7000-Overview.pdf
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f4f6ca4-4bea-45d6-bdf0-475b00aa6df3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.