Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The subject of the article is a comparison of two types of concrete carbonation models: self-limited carbonation and infinite carbonation. The results of the research on the progress of carbonation during six years of sample exposure in natural atmospheric conditions were used to determine the detailed models for a set of concretes with different w/c and different types of cement, and two scenarios of initial curing. It has been established that the model of self-limiting carbonation (i.e. hyperbolic) is more adequate for describing laboratory tests results in natural conditions.
Rocznik
Tom
Strony
1159--1166
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Department of Building Materials Engineering
autor
- Warsaw University of Technology, Department of Building Materials Engineering
autor
- Warsaw University of Technology, Department of Building Materials Engineering
autor
- Building Research Institute, ITB, Warszawa
Bibliografia
- [1] L. Czarnecki and D. Van Gemert, “Innovation in construction materials engineering versus sustainable development”, Bull. Pol. Ac.: Tech. 65(6), 765‒771 (2017).
- [2] P. Woyciechowski, Concrete carbonatiuon model, OWPW Warszawa 2013 [in Polish].
- [3] P. Woyciechowski and J.J. Sokołowska, “Self-terminated carbonation model as a useful support for durable concrete structure designing”, Struct. Eng. Mech. 63(1), 55–64 (2017).
- [4] L. Czarnecki, P. Woyciechowski and G. Adamczewski, “Risk of concrete carbonation with mineral industrial by-products”, KSCE J. Civ. Eng. 22(2), 755–764 (2018).
- [5] N. Seigneur et al., “Predicting the atmosphericcarbonation of cementitious materials using fully coupled two-phase reactive transport modelling”, Cem. Concr. Res. 130, 105966 (2020).
- [6] A.M. Grabiec, D. Zawal, J. Starzyk and D. Krupa-Palacz, “Selected properties of concrete with recycled aggregate subjected to biodeposition”, Bull. Pol. Ac.: Tech. 67(6), 1171‒1179 (2019).
- [7] E.F. Felix and E. Possan, “Modeling the Carbonation Front of Concrete Structures in the Marine Environment through ANN”, IEEE Latin Am. Trans. 16(6), 1772‒1779, (2018).
- [8] Y. Chen, X. Chen and J. Bu, “Nonlinear damage accumulation of concrete subjected to variable amplitude fatigue loading”, Bull. Pol. Ac.: Tech. 66(2), 157‒163 (2018).
- [9] A. Zurek, “Numerical approximation of a concrete carbonation model: Study of the law of propagation”, Numer. Meth. Part Differ. Equ. 35(1), 1801‒1820 (2019). DOI: 10.1002/num.22377.
- [10] J. Jiao, B. Diao and Ch. Wang, “The Carbonation Model of Concrete Structures and Its Application”, in International Conference on Civil, Transportation and Environment (ICCTE) Guangzhou, China, 2016
- [11] K. Tongaria, S. Mandal and D. Mohan, “A Review on Carbonation of Concrete and its Prediction Modelling”, J. Environ. Nanotechnol. 7(4), 75‒90 (2018).
- [12] V.-L. Ta, S. Bonnet, T.S. Kiesse and A. Ventura, “A new meta-model to calculatecarbonation front depth within concrete structures”, Constr. Build. Mater. 129, 172‒181 (2016). DOI: 10.1016/j.conbuildmat.2016.10.103.
- [13] M. Bhattacharjee et al., “Selection for the Best Less-Parameter Carbonation Depth Model”, Am. J. Eng. Technol. Soc. 2(6), 167‒179 (2015).
- [14] B.S. Divsholi and J.H. Cahyadi, Concrete carbonation under a wide range of conditions. Modeling the carbonation of PC and blended cement concrete under a wide range of conditions, VDM Verlag Dr. Müller Aktiengesellschaft & Co. KG, Saarbrücken 2009.
- [15] G. Wieczorek, Reinforcement corrosion initiated by chlorides or cover carbonation, Dolnośląskie Wydawnictwo Edukacyjne, Wrocław 2002 [in Polish].
- [16] V. Papadakis, C. Vayenes and M. Fardis, “Experimental investigation and mathematical modeling of the concrete carbonation problem”, Chem. Eng. Sci. 46, 1333–1339 (1991).
- [17] V. Papadakis, C. Vayenes and M. Fardis, “Fundamental modeling and engineering investigation of concrete in relation to CO2 permeability and degradation of coating”, Constr. Build. Mater. 22, 2260–2268 (2008).
- [18] V. Papadakis, C. Vayenes and M. Fardis, “Physical and chemical characteristics affecting the durability of concrete”, ACI Mater. J. 9(2), 186–196 (1991).
- [19] V. Papadakis, M. Fardis and C. Vayenes, “Effect of composition, environment factor and cement-lime mortar coating on concrete carbonation”, Mater. Struct. 25, 293–304 (1992).
- [20] V. Papadakis and M. Fardis, “A reaction engineering approach to the problem of concrete carbonation”, AICHE J. 35(10), 1639–1650 (1989).
- [21] G.W. Groves, A. Brough, I.G. Richardson and C.M. Dobson, “Progressive changes in the structure of hardened C3S cement pastes due to carbonation”, J. Am. Ceram. Soc. 74(11), 2891–2896 (1991).
- [22] X.-Y. Wang and H.-S. Lee, “A model for predicting the carbonation depth of concrete containing low-calcium fly ash”, Constr. Build. Mater. 23, 725–733 (2009).
- [23] H. Torres, E. Correa, F. Echeverria and J. G. Castaño, “Simplified Mathematical Model for Concrete Carbonation”, J. Mater. Civ. Eng. 29(10), 2017.
- [24] “New approach to durability design. An example for carbonation induced corrosion”, CEB Bulletin 238, Comité Euro-International du Béton (CEB), 1997.
- [25] L. Czarnecki and P.H. Emmons, “Repair and protection of concrete structures”, Polski Cement 2002 [in Polish]
- [26] G. Fagerlund, “Concrete structures durability”, Arkady, Warszawa 1997 [in Polish]
- [27] L. Czarnecki and J.J. Sokołowska, “Material model and revealing the truth”, Bull. Pol. Ac.: Tech. 63(1), 7–14 (2015).
- [28] L. Czarnecki and P. Woyciechowski, “Concrete carbonation as a limited process and its relevance to concrete cover thickness”, ACI Mater. J. 109(3), 275–288 (2012).
- [29] L. Czarnecki and P. Woyciechowski, “Prediction of the reinforced concrete structure durability under the risk of carbonation and chloride aggression”, Bull. Pol. Ac.: Tech. 61(1), 173–181 (2013).
- [30] L. Czarnecki and P. Woyciechowski, “Modelling of concrete carbonation; is it a process unlimited in time and restricted in space?”, Bull. Pol. Ac.: Tech. 63(1), 43–54 (2015).
- [31] T. Tracz, “Open porosity of cement pastes and their gas permeability”, Bull. Pol. Ac.: Tech. 64(4), 775‒783, (2016).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f434c2f-6854-4b42-bbbd-98ac00943c19