PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Amorphization and liquid state separation in Ni80-2xCuxFexP20 alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Amorfizacja i podział w stanie ciekłym w stopach Ni80-2xCuxFexP20
Języki publikacji
EN
Abstrakty
EN
The aim of the work is to study the ability and potential of glass formation in Ni-Fe-Cu-P alloys. A series of alloys were produced in arc furnace (i.e. Ni70Fe5Cu5P20, Ni60Fe10Cu10P20, Ni50Fe15Cu15P20, Ni40Fe20Cu20P20, Ni30Fe25Cu25P20, Ni20Fe30Cu30P20). The primary microstructure of the ingots was studied. The ribbons in as-melt-spun state were characterized by X-ray diffraction (XRD). The Ni70Fe5Cu5P2, Ni60Fe10Cu10P20 melt-spun alloys were found to be amorphous. For higher copper and iron concentrations a crystalline structure was obtained after melt spinning. This correlated with the tendency for the formation of the Fe-based phases enriched in P and Cu-based poorly alloyed phases which resulted in the formation of crystalline microstructure in melt-spun ribbons. For higher concentration of Fe and Cu, microstructures of the alloys contained constituents resultant from a tendency for separation in the liquid state. It is observed that the formation of the crystal line melt-spun ribbons is caused by the attraction of phosphorus by iron and the formation of copper-based fcc phase.
PL
Celem pracy było zbadanie podatności na zeszklenie oraz możliwości wytworzenia struktury szklistej w stopach wieloskładnikowych Ni-Fe-Cu-P. W piecu łukowym wytworzono serię stopów (tzn.: Ni70Fe5Cu5P20, Ni60Fe10Cu10P20, Ni50Fe15Cu15P20, Ni40Fe20Cu20P20, Ni30Fe25Cu25P20, Ni20Fe30Cu30P20). Badano strukturę pierwotną wlewków. Taśmy w stanie po odlewaniu na wirujący bęben badano za pomocą dyfrakcji rentgenowskiej. Stwierdzono, że stopy Ni70Fe5Cu5P20, Ni60Fe10Cu10P20 odlewane na wirujący bęben były amorficzne. Dla stopów o wyższych zawartościach miedzi i żelaza po odlewaniu na wirujący walec otrzymano strukturę krystaliczną. Fakt ten można powiązać z tendencją do tworzenia faz na osnowie żelaza wzbogaconych w fosfor oraz zubożonych w pozostałe składniki stopowe faz na osnowie miedzi,które przyczyniły się do tworzenia w odlewanych taśmach mikrostruktury krystalicznej. Dla wyższych zawartości żelaza i miedzi, mikrostruktury stopów zawierały składniki fazowe powstające w efekcie tendencji stopów do podziału fazowego w stanie ciekłym. Zaobserwowano, że tworze nie krystalicznych taśm jest spowodowane przez przyciąganie fosforu przez żelazo oraz tworzenie bogatej w miedź fazy o strukturze regularnej ściennie centrowanej.
Rocznik
Strony
45--54
Opis fizyczny
Bibliogr. 34 poz., rys., wykr., tab.
Twórcy
autor
  • Intitute of Technology, Faculty of Mathematics, Physics and Technical Science, Pedagogical University of Cracow
autor
  • Faculty of Computer Science and Materials Science, University of Silesia, Chorzów
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow
Bibliografia
  • [1] Yoshizawa Y., Oguma W., Yamauchi K.: New Fe-based soft magnetic alloys composed of ultrafine grain-structure. Journal of Applied Physics, 64 (1988), 6044–6046
  • [2] Shen T.D., Schwarz R.B.: Bulk ferromagnetic glasses in the Fe–Ni–P–B system. Acta Materialia, 49 (2001), 837–847
  • [3] Conner R.D., Rosakis A.J., Johnson W.L., Owen D.M.: Fracture toughness determination for a beryllium-Fracture toughness determination for a beryllium-bearing bulk metallic glass. Scripta Materialia, 37 (1997), 1373-1378
  • [4] Peker A., Johnson W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters, 63 (1993), 2342–2344
  • [5]He Y., Schwarz R.B., Archuleta J.I.: Bulk glass formation in the Pd–Ni–P system. Applied Physics Letters, 69 (1996), 1861–1863
  • [6] Ziewiec K., Bryła K., Ziewiec A., Prusik K.: The microstructure and properties of a new Fe41Ni39P10Si5B5 glass forming alloy. Archives of Materials Science and Engineering, 34 (2008), 35–38
  • [7] Lee S.-W., Huh M.-Y., Fleury E., Lee J.-C.: Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Materialia, 54 (2006), 349–355
  • [8] Szuecs F., Kim C.P., Johnson W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Materialia, 49 (2001), 1507–1513
  • [9]Choi-Yim H., Conner R.D., Johnson W.L.: Processing, microstructure and properties of bulk metallic glass composites. Annales de Chimie – Science des Matériaux, 27, 5 (2002), 113–118
  • [10] Tan H., Zhang Y., Li Y.: Synthesis of La-based in-situ bulk metallic glass matrix composite. Intermetallics, 10 (2002), 1203–1205
  • [11] Wang Q., Balandin J.-J., Suery M., Van de Moortele B., Pelletier J.-M.: High temperature deformation of a fully amorphous and partially crystallized bulk metallic glass. Annales de Chimie – Science des Materiaux, 27, 5 (2002), 19–24
  • [12] Hu X., Ng S.C., Feng Y.P., Li Y.: Glass forming ability and in-situ composite formation in Pd-based bulk metallic glasses. Acta Materialia, 51 (2003), 561–572
  • [13] Eckert J., Kühn U., Mattern N., He G., Gebert A.: Structural bulk metallic glasses with different length-scale of constituent phases. Intermetallics, 10 (2002), 1183–1190
  • [14]Ziewiec K.: Characterization of immiscible Ni78Ag2P20 alloy and formation of amorphous/crystalline composite. Journal of Non-Crystalline Solids, 355 (2009), 2540–2543
  • [15] Ziewiec K., Malczewski P., Boczkal G., Prusik K.: Formation and properties of amorphous/crystalline ductile composites in Ni-Ag-P immiscible alloys. Solid State Phenomena, 186 (2012), 216–221
  • [16] Kozieł T., Kędzierski Z., Zielińska-Lipiec A., Latuch J.: The microstructure of melt-spun alloys with liquid miscibility gap. Journal of Physics: Conference Series 144, 2009, 012093-1–012093-4
  • [17] Ziewiec K., Olszewski P., Gajerski R., Kąc S., Ziewiec A., Kędzierski Z.: Glass forming ability and thermal stability of Ni63Cu9Fe8P20 melt spun ribbon. Journal of Non-Crystalline Solids, 343 (2004), 150–153
  • [18] Ziewiec K., Lelątko J., Pączkowski P., Bryła K.: Devitrification and Nano-Crystalline/Amorphous Composite Formation in Ni64Cu9Fe8P19 Glassy Alloy at Elevated Temperatures. Solid State Phenomena, 130 (2007), 167–170
  • [19] Ziewiec K., Bryła K., Błachowski A., Ruebenbauer K., Przewoźnik J.: Characterisation and structure development of Ni64Cu9Fe8P19 glass forming alloy at elevated temperatures. Journal of Alloys and Compounds, 429 (2007), 133–139
  • [20] Boer F.R., Boom R., Mattens W.C.M., Miedema A.R., Niessen A.K.: Cohesion and structure, Cohesion in metals. Vol. 1. Elsevier Science, Amsterdam, 1988
  • [21] Griesche A., Macht M.-P., Frohberg G.: Chemical diffusion in bulk glass-forming Pd40Cu30Ni1P2 0melts. Scripta Materialia, 53 (2005), 1395–1400
  • [22] Ziewiec K., Kędzierski Z., Dargel-Sulir L., Gajerski R.: X-ray studies of Ni78P13 and Ni81P19 electroless alloys in as-deposited and heat treated state. Metallurgy of Foundry and Engineering, 26, 2 (2000), 121–126
  • [23] Ziewiec K., Kędzierski Z., Morgiel J.: Kinetics of phase transformations in Ni-P alloys upon heating. Metallurgy and Foundry Engineering, 28, 2 (2002), 157–166
  • [24] Ziewiec K., Gajerski R., Dutkiewicz J., Król J.: Thermal behaviour of rapidly quenched Cu-Ni-based alloys with phosphorus. Metallurgy and Foundry Engineering, 28, 2 (2002), 149–156
  • [25] Ziewiec K., Olszewski P., Gajerski R., Małecki A.: Glass forming ability and thermal stability of Cu68.5Ni12P19.5and Cu66Ni11.5P22.5melt spun ribbons. Journal of Alloys and Compounds, 373 (2004), 115–121
  • [26] John D.H. St.: Freezing Diagrams: Part I. Freezing Diagrams: Part I. Development and Implications for Glas Formability. Metallurgical Transactions, 20A (1989), 289–297
  • [27] Ziewiec K., Kędzierski Z.: The microstructure development in Fe32Cu20Ni28P10Si5B5immiscible alloy and possibilities of formation of amorphous/crystalline composite. Journal of Alloys Compounds, 480 (2009), 306–310
  • [28] Ziewiec K., Ziewiec A., Prusik K.: Microstructures in Fe30Ni30Cu20P10Si5B5 melt-spun alloy ejected at various temperatures. Journal of Achievments in Materials and Manufacture Engineering, 37, 2 (2009), 532–537
  • [29] Ziewiec K., Malczewski P., Gajerski R., Ziewiec A.: The microstructure development in arc-melt and melt-spun Fe50Ni10Cu20P10Si5B5immiscible alloy. Journal of Non-Crystalline Solids, 357 (2011), 73–77
  • [30] Ziewiec K., Malczewski P., Prusik K.: Transformations in liquid state and microstructure analysis in immiscible in Fe60Cu20P10Si5B5 alloy. Inżynieria Materiałowa, 1 (2011), 26–29
  • [31] Kozieł T., Kędzierski Z., Zielińska-Lipiec A., Ziewiec K.: The microstructure of liquid immiscible Fe–Cu-based in situ formed amorphous/crystalline composite. Scripta Materialia, 54 (2006), 1991–1995
  • [32] Kozieł T., Zielińska-Lipiec A., Latuch J., Kąc S.: Microstructure and properties of the in situ formed amorphous-crystalline composites in the Fe-Cu-based immiscible alloys, Journal of Alloys and Compounds, 509 (2011), 4891–4895
  • [33] Kozieł T., Kędzierski Z., Zielińska-Lipiec A., Latuch J., Cieślak G.: TEM studies of melt-spun alloys with liquid miscibility gap. Journal of Microscopy, 237, 3 (2010), 267–270
  • [34] Kozieł T., Zielińska-Lipiec A., Kędzierski Z., Czeppe T.: Transmission electron microscopy study of crystallization in Fe-Si-B-Cr-C amorphous alloy. Journal of Microscopy, 224, 1 (2006), 27–2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f410233-7940-48b9-911d-d5b0f2c9161f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.