Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider the robust chromatic number χ1(G) of planar graphs G and show that there exists an infinite family of planar graphs G with χ1(G) = 3, thus solving a recent problem of Bacsó et al. from [The robust chromatic number of graphs, Graphs Combin. 40 (2024), #89].
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
103--111
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- University of Bordeaux, CNRS, LaBRI, Talence, France
- Comenius University, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
autor
- Faculty of Information Studies, Novo Mesto, Slovenia
- Rudolfovo Institute, Novo Mesto, Slovenia
autor
- Pavol Jozef Šafárik University, Faculty of Science, Košice, Slovakia
Bibliografia
- [1] G. Bacsó, C. Bujtás, B. Patkós, Z. Tuza, M. Vizer, The robust chromatic number of certain graph classes, arXiv:2305.01927 [math.CO], (2023).
- [2] G. Bacsó, B. Patkós, Z. Tuza, M. Vizer, The robust chromatic number of graphs, Graphs Combin. 40 (2024), #89.
- [3] A. Kemnitz, M. Voigt, A note on non-4-list colorable planar graphs, Electron. J. Combin. 25 (2018), #P2.46.
- [4] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, 2001.
- [5] B. Patkós, Z. Tuza, M. Vizer, Extremal graph theoretic questions for q-ary vectors, Graphs Combin. 40 (2024), #57.
- [6] J. Petersen, Die Theorie der regulären Graphs, Acta Math. 15 (1891), 193–220.
- [7] M. Rosenfeld, The number of cycles in 2-factors of cubic graphs, Discrete Math. 84 (1990), 285–294.
- [8] C. Thomassen, Five-coloring graphs on the torus, J. Combin. Theory Ser. B, 62 (1994) 1, 11–33.
- [9] W.T. Tutte, On Hamiltonian circuits, J. London Math. Soc. 2 (1946), 98–101.
- [10] M. Voigt, private communication, 2024.
- [11] H. Whitney, 2-isomorphic graphs, Amer. J. Math. 55 (1933), 245–254.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f409c16-593e-4acb-b5c7-3bc552b2d971