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NOTE ON ROBUST COLORING OF PLANAR GRAPHS
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Abstract. We consider the robust chromatic number χ1(G) of planar graphs G and
show that there exists an infinite family of planar graphs G with χ1(G) = 3, thus
solving a recent problem of Bacsó et al. from [The robust chromatic number of graphs,
Graphs Combin. 40 (2024), #89].
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1. INTRODUCTION

In this paper, we consider simple graphs, i.e. graphs without loops and multiedges.
A mapping f : V (G) → E(G) ∪ {∅} is a 1-selection of a graph G if for every v ∈ V (G)
either f(v) is incident with v or f(v) = ∅. In other words, f is an assignment of
at most one incident edge for every vertex of a graph. We call the resulting set of
edges f(V (G)) a 1-selection set. Clearly, each component of the graph induced by any
1-selection set is a graph with at most one cycle.

Given a 1-selection f , the graph Gf obtained from G by deleting the edges from
f(V (G)) is called the 1-removed subgraph of G regarding f . Using the set of all
1-removed subgraphs of G, we define the robust chromatic number of a graph G as

χ1(G) = min
f

χ(Gf ),

where χ(Gf ) is the chromatic number of Gf .
The notion of robust coloring was recently introduced by Patkós, Tuza, and

Vizer [5], who used it as a tool for deriving estimates on a Turan-type extremal
problem. Afterwards, a systematic investigation of the robust chromatic number and
other robust invariants was done by Bacsó et al. in [2], and in [1], results for some
specific graph classes were presented.

In particular, for the robust chromatic number, the following two general results
were derived.
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Theorem 1.1 (Bacsó et al. [2]). For any graph G, it holds that
⌈

χ(G)
3

⌉
≤ χ1(G) ≤ χ(G).

Moreover, both bounds are tight.

Recall that a graph is d-degenerate if its every subgraph contains a vertex of degree
at most d.

Theorem 1.2 (Bacsó et al. [2]). For any d-degenerate graph G, it holds that

χ1(G) ≤ d

2 + 1.

Moreover, this upper bound is tight as for every integer k ≥ 1 there exists
a 2k-degenerate graph Hk with χ1(Hk) = k + 1.

As a direct corollary of Theorem 1.2, one obtains upper bounds on outerplanar,
triangle-free planar, and planar graphs, since, by Euler’s formula, they are 2-degenerate,
3-degenerate, and 5-degenerate, respectively.

Corollary 1.3.

(i) For any outerplanar graph G, it holds that χ1(G) ≤ 2 ([2]).
(ii) For any triangle-free planar graph G, it holds that χ1(G) ≤ 2.
(iii) For any planar graph G, it holds that χ1(G) ≤ 3 (([2]).

The first two cases of Corollary 1.3 are both tight, whereas for the case (iii),
it was not clear whether the upper bound can be achieved by some planar graph;
Bacsó et al. [2] proposed this question as a problem.

Problem 1.4 (Bacsó et al. [2]). Do there exist planar graphs with χ1(G) = 3, or is 2
a universal upper bound?

The truth of the latter part would provide an interesting feature that any planar
graph admits a 1-selection set whose removal results in a bipartite planar graph. This
however is not the case as we show in this note.

Theorem 1.5. There is an infinite family of planar graphs G with χ1(G) = 3.

Let us mention here that, as observed by Voigt [10], the above result can also be
obtained through a different approach, using a result of Kemnitz and Voigt [3] on list
coloring of planar graphs.

The rest of the paper is organized as follows. In Section 2, we define notions used
further on, in Section 3, we prove Theorem 1.5, and in Section 4, we conclude with
some directions of further work.
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2. PRELIMINARIES

In this section, we introduce the notions and terminology that we use in our proofs.
For a set of edges S, by G − S we denote the graph obtained by removing the edges

of S from G, and by G[S] we denote the subgraph of G induced by the edges of S.
A matching in a graph G is any 1-regular subgraph of G, and a k-factor of G is

a k-regular spanning subgraph of G.
For a plane graph G, i.e. a planar graph together with some embedding in the

plane, with V (G), E(G), and F (G) we denote its set of vertices, edges, and faces,
respectively. The edges bounding a face f of a plane graph are the boundary edges of f .
In a connected plane graph, the length of the shortest closed trail along the edges
bounding a face f is the length of f , denoted by ℓ(f). If a graph is not connected, then
the length of a face f is the sum of the lengths of the shortest closed trails bounding f .
A face of length k is called a k-face. In a 2-connected plane graph, the boundary edges
of every face form a cycle [4], while in non-connected plane graphs face boundaries
may be comprised of several (disconnected) parts. In particular, if a boundary of a face
contains a bridge, that edge is counted twice in the length of a face as the boundary
trail passes it twice. On the other hand, as shown by Whitney [11], a 3-connected
planar graph has a unique (up to equivalence) embedding in the plane.

If every face in a plane graph G is of length 3, then G is a triangulation, and
similarly, G is a quadrangulation if its every face is of length 4. Recall that every plane
quadrangulation is bipartite.

A (geometric) dual G∗ of a plane graph G is a plane (multi-)graph with
V (G∗) = F (G), F (G∗) = V (G) and two vertices f∗, g∗ in G∗ being connected by
an edge for every edge incident with the both corresponding faces f, g in G (so, each
edge e ∈ E(G) has a corresponding edge e∗ ∈ E(G∗)). For a set S of edges from G, we
denote the set of the corresponding edges in G∗ by S∗. Moreover, if G is a triangulation,
then G∗ is a bridgeless cubic graph, and therefore it contains a perfect matching [6].
Note also that the dual of G∗ is the graph G.

3. PROOF OF THEOREM 1.5

Before we give the proof of the theorem, we state several auxiliary results. We first
formalize the observation from the definition of 1-selections.

Proposition 3.1. Let H be a subgraph of a graph G induced by some subset of edges
of G. Then, every component of H contains at most one cycle if and only if H is
a 1-selection set.

Proof. Assume first that every component of H contains at most one cycle. If C
does not contain a cycle, then we select an arbitrary vertex of the tree C to be vr,
representing the root of the considered tree. If C contains a cycle, then we direct
its edges in a circular way, and then we temporarily collapse the cycle into a single
vertex vr, the root of the tree obtained this way. Now we direct all the edges of C
away from vr.
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Next, we define a 1-selection f such that to every vertex v of C we assign the edge
whose terminal vertex is v. Note that in the case when C does not contain a cycle,
the vertex vr has no edge assigned. This establishes the right implication.

For the left implication, assume that H is a 1-selection set and suppose the
contrary that there is a component C of H containing at least two cycles. In this case,
|E(C)| ≥ |V (C)| + 1, meaning that at least two edges need to be assigned to the same
vertex, a contradiction.

We say that a 1-selection f guarantees a property P for a graph G if Gf has
the property P; analogously, a 1-selection set guarantees a property P for G. In the
following two lemmas, we use the notion of a minimal 1-selection set, by which we
mean a 1-selection set S which guarantees bipartiteness of G − S for a graph G but
removal of any edge from S would not guarantee bipartiteness anymore.
Lemma 3.2. Let G be a plane triangulation. If S ⊆ E(G) is a minimal 1-selection
set which guarantees bipartiteness for G (i.e. G − S is bipartite), then every 3-face in
G has exactly one or three of its edges in S. Moreover, there are at most two 3-faces
with all three edges in S.
Proof. Let n = |V (G)|. Since G is a plane triangulation, it follows from Euler’s formula
that the number of 3-faces in G is exactly 2n − 4. If G − S is bipartite, then every
3-face must have at least one edge in S. Since every edge is incident with two faces,
this means that we need at least n − 2 edges to cover every face (note that covering all
faces with exactly n − 2 edges means that the dual of G admits a perfect matching).
So, n − 2 ≤ |S| ≤ n.

Suppose now that uvw is a 3-face with exactly two edges, say uv and vw, in S.
Then, in any 2-coloring of the (bipartite) graph G − S, the vertices u and w receive
distinct colors. Therefore, v has distinct color as u or w, say u, and thus the edge uv
needs not be in S. This means that S − uv also guarantees bipartiteness for G, which
contradicts the minimality of S.

Finally, observe that if all three edges of a 3-face are in S, they cover four 3-faces
altogether, and thus we can have at most two 3-faces with all three edges in S, since
n − 2 ≤ |S| ≤ n. Moreover, the two 3-faces are not adjacent by Proposition 3.1.

From Lemma 3.2 it follows that the graph G∗[S∗] induced by the edges of S∗ is
comprised only of isolated edges and at most two claws K1,3.

For the purposes of stating and proving the next lemma, we refer to isolated
vertices as degenerate cycles.
Lemma 3.3. Let G be a plane triangulation. If S ⊆ E(G) is a minimal 1-selection
set which guarantees bipartiteness for G (i.e. G − S is bipartite), then every face of the
graph G∗ − S∗ has a boundary consisting of at most two (possibly degenerate) cycles.

Note that, by Lemma 3.2, a degenerate cycle may appear on the boundary of some
face at most twice (in the cases of G∗[S∗] having components isomorphic to K1,3).

Proof. Recall that since G is a triangulation, G∗ is cubic. Moreover, since S∗ covers all
the vertices of G∗ and G[S∗] has only vertices of degrees 1 and 3, the graph G∗ − S∗

has maximum degree 2 and the boundary of every face is comprised of cycles.
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Now, suppose to the contrary that g is a face of G∗ − S∗ whose boundary consists
of at least three (possibly degenerate) cycles. Let C∗

g = {C∗
1 , C∗

2 , . . . , C∗
ℓ } be the set of

the boundary cycles of g. Next, let R∗ ⊆ S∗ be the set of all edges of S∗ incident with
the set of faces of G∗ corresponding to the face g of G∗ − S∗. Clearly, the set R∗ is
nonempty. Observe that the set R in G corresponding to the set R∗ induces a connected
subgraph G[R] of the graph G[S], which has at most one cycle by Proposition 3.1.

Now, let R∗
i ⊂ R∗ be the edges with exactly one endvertex incident with the cycle

C∗
i ∈ C∗

g . Observe that the edges of every R∗
i form cuts in G∗ and thus the corresponding

sets Ri form subgraphs of G with at least one cycle in each of their components and
hence also in G[R]. Therefore, we may assume that every Ri forms a connected
component with exactly one cycle, otherwise we already have at least two cycles in
G[R], a contradiction.

It remains to show that G[R] contains at least two cycles, since it may happen that
for some pair of sets R∗

j and R∗
k, for some j, k ∈ {1, . . . , ℓ}, we have that R∗

j ⊆ R∗
k or

R∗
k ⊆ R∗

j , and thus the sets Rj and Rk contribute only one cycle. However, note that
since every edge in R∗

j ∩ R∗
k has one endvertex in R∗

j and the other in R∗
k, it cannot

appear in any other R∗
i , and therefore, there is at least one additional cycle in G[R],

which by Proposition 3.1 means that S is not a 1-selection, a contradiction.

Now, we are ready to give a proof of Theorem 1.5.

Proof of Theorem 1.5. In order to prove the theorem, we construct a cubic 3-connected
plane graph G∗ whose dual G has χ1(G) = 3. In the construction, we use copies of T ′

(see the right configuration in Figure 1). The configuration T ′ has the property that
if a graph G contains T ′ as a subgraph, then every path in G, which uses two of the
edges a, b, c and visits all vertices of T ′ contains the edge a [7, 9]. In other words,
every Hamiltonian cycle in T (see the left graph in Figure 1) contains the edge a.

a

b c

a

b c

Fig. 1. The Tutte’s triangle T (left) and the configuration T ′ (right)

In Figure 2, all possible matchings in T ′ containing the edge a are depicted, and this
implies the following claim.

Claim 3.4. Every 2-factor in T ′, not containing the edge a, contains at least one
cycle not using the edges b and c.
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C12 + P C7 + P C15C4 + P

C7 + C8C15 C9 + P C4 + P

Fig. 2. Possible matchings (blue edges) in T ′ that contain the edge a, and the
corresponding 2-factors (red edges) with internal cycles depicted heavier

Now, consider the graph G∗ in Figure 3. It contains three 3-edge-cuts each comprised
of three edges a and copies of T ′ on both sides of each edge a. Since at most two
vertices in G∗[S∗] have degree 3, this means that at least six copies of T ′ corresponding
to one 3-edge-cut (say the middle one, depicted with heavier edges) have the property
that for any 1-selection set R guaranteeing bipartiteness for G at least one edge a,
denote it ax, in that 3-edge-cut is in the corresponding set R∗.

Therefore, by Claim 3.4, the two corresponding copies of T ′ contain a cycle in the
boundary of some face of G∗ − R∗ and consequently, the face incident with ax has
at least three boundary cycles in G∗ − R∗. By Lemma 3.3, this means that G − R
is not bipartite.

In order to obtain an infinite family of plane graphs with the robust chromatic
number equal to 3, observe that G∗ can easily be further expanded by, e.g., copies of
3-edge-cuts and so the corresponding duals will still not be bipartite.

On the other hand, there is a big class of plane graphs having the robust chromatic
number equal to 2.
Proposition 3.5. For every plane triangulation G whose dual admits a 2-factor with
at most two cycles, we have that χ1(G) = 2.
Proof. Let C∗ be a 2-factor in G∗ with at most two cycles. Then S∗ = E(G∗) \ E(C∗)
is a perfect matching in G∗. Observe that there is at most one cycle in S corresponding
to the cut in S∗ represented by the edges with endvertices incident with two cycles
of C∗. Therefore, S is a 1-selection set by Proposition 3.1. Moreover, since S∗ is
a perfect matching, every 3-face in G has one incident edge in S and so the graph
G − S is quadrangulation, hence bipartite.
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Fig. 3. The dual G∗ of a plane triangulation G with χ1(G) = 3.
The three edges depicted heavier form a 3-edge-cut in which at least one of

the edges is also in R∗

Clearly, all subgraphs of triangulations from Proposition 3.5 also have the robust
chromatic number at most 2.

Corollary 3.6. Every planar graph G, which is a subgraph a plane triangulation
whose dual admits a 2-factor with at most two cycles, has χ1(G) ≤ 2.

4. CONCLUSION

The investigation of robust invariants is in an early stage, but a number of intriguing
results have already been obtained. However, there are plenty of further open problems
in this area.

For example, based on the result presented in this note, one may wonder what is
the upper bound for the robust chromatic number of graphs embeddable to surfaces of
higher genus. In the case of the torus, every graph embeddable on it is 6-degenerate,
and with some additional analysis, using the result of Thomassen [8] about proper
coloring of toroidal graphs, one can derive that every toroidal graph G has χ1(G) ≤ 3.
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On the other hand, for K10, which has genus 4 and non-orientable genus 7 (see,
e.g., [4]), we have that χ1(K10) = 4 by [2, Theorem 2]. So, the following question arises.

Question 4.1.

(a) Is there a graph G with genus less than 4 and χ1(G) = 4?
(b) Is there a graph G with non-orientable genus less than 7 and χ1(G) = 4?

In particular, the result of Theorem 1.2 for degenerate graphs does not seem to be
tight for degenerate graphs of given genus. So we propose also the following.

Problem 4.2. Determine the tight upper bound for the robust chromatic number of
graphs with given (non-orientable) genus.
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