PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the mechanical, corrosion, and tribological characteristics of AZ61 Mg with boron carbide nano particles via the stir casting route

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Magnesium composites are innovative, compact, and distinctive materials. Because of their low density, magnesium composites are suitable for applications in the automobile, aviation, semiconductor, and pharmaceutical sectors. To enhance the mechanical wear and corrosion behavior of theAZ61 Mg alloy, different weight percentages of nano-B4C reinforcements (2.5, 5, 7.5, and 10wt%) were strengthened with magnesium matrix. Fabrication of magnesium composites was achieved through the stir casting method. The as-cast specimens were subjected to microstructural analysis, which showed that the B4C nanoparticles were dispersed uniformly, well bonded to the matrix, and had a minimal level of porosity. This shows that the inclusion of B4C nanoparticles has aninsignificanteffect on the microstructure of the as-cast material. The material’s tensile strength, compressive strength, hardness, corrosion resistance, and wear resistance were all greatly increased by the Mg17Al12 phase’s fracture and dispersion. Scanning electron microscopy was utilized to inspect the surfaces of AZ61/B4C nanocomposites and witnessed the uniform dispersal of reinforcement within the matrix. The maximum value for mechanical properties was obtained for AZ61/7.5wt% B4C nanocomposite and the lowest value was found to be the corrosion test. These results show that the AZ61/7.5wt% B4C nanocomposite is a superior material for aerospace and automotive engineering components where high compressive strength, corrosion resistance, and wear resistance are required.
Wydawca
Rocznik
Strony
227--243
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, University College of Engineering, Thirukuvalai-610204, Tamilnadu, India
autor
  • Department of Mechanical Engineering, University College of Engineering, Thirukuvalai-610204, Tamilnadu, India
  • Department of Mechanical Engineering, Chendhuran College of Engineering and Technology, Lena Vilakku, Pudukkottai – 622507, Tamilnadu, India
autor
  • Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai –600073, Tamilnadu, India
Bibliografia
  • [1] Luo XC, Zhang DT, Zhang WW, Qiu C, Chen DL.Tensile properties of AZ61 magnesium alloy produced by multi-pass friction stir processing: effect of sample orientation. Mater Sci Eng A.2018; 725:398–405. https://doi.org/10.1016/j.msea.2018.04.017
  • [2] Singh K, Singh G, Singh H. Investigation of microstructure and mechanical properties of friction stir welded AZ61 magnesium alloy joint. J Magnes Alloys.2018;6(3):292–8. https://doi.org/10.1016/j.jma.2018.05.004
  • [3] Dai Y, Chen X-H, Yan T, Tang A-T, Zhao D, Luo X, Liu C-Q, Cheng R-J, Pan F-S. Improved corrosion resistance in AZ61 magnesium alloys induced by impurity reduction Acta MetalSin (Engl Lett). 2020; 33(2):225–232. https://doi.org/10.1007/s40195-019-00914-2
  • [4] Hilšer O, Rusz S, Tański T, Snopiński P, Džugan J, Kraus M. Mechanical properties and structure of AZ61 magnesium alloy processed by equal channel angular pressing. IOP Conf Ser Mater Sci Eng. 2017; 179(1):012028. https://doi.org/10.1088/1757-899X/179/1/012028
  • [5] Singh K.Singh G, Singh H. Investigation on the microstructure and mechanical properties of a dissimilar friction stir welded joint of magnesium alloys. Proc Inst Mech Eng L-J Mat. 2019; 233(12):2444–54. https://uk.sagepub.com/en-gb/journals-permissions
  • [6] Öteyaka MÖ, Ghali E, Tremblay R. Corrosion behaviour of AZ and ZA magnesium alloys in alkaline chloride media. Int J Corros.2012;110. https://doi.org/10.1155/2012/452631
  • [7] Li L, Nam ND. Effect of yttrium on corrosion behavior of extruded AZ61 Mg alloy. J Magnes Alloys. 2016; 4(1):44–51. http://dx.doi.org/10.1016/j.jma.2015.11.008
  • [8] Moheimani, SK, Keshtgar A, Khademzadeh K, Tayebi M, Rajaee A, Saboori A. Tribological behaviour of AZ31 magnesium alloy reinforced by bimodal size B4C after precipitation hardening, J Magnes Alloys. 2021; 4:38. https://doi.org/10.1016/j.jma.2021.05.016
  • [9] Dziubińska A, Gontarz A, Horzelska K, Pieśko P. The microstructure and mechanical properties of AZ31 magnesium alloy aircraft brackets produced by a new forging technology. Procedia Manuf. 2015; 2:337–41. https://doi.org/10.1016/j.promfg.2015.07.059
  • [10] Dinaharan I, Zhang S, Chen C, Shi Q. Assessment of Ti-6Al-4V particles as reinforcement for AZ31 magnesium alloy-based composites to boost ductility incorporated through friction stir processing. J Magnes Alloys.2022; 10:979–92. https://doi.org/10.1016/j.jma.2020.09.026
  • [11] Singh A, Bala N. Fabrication and tribological behavior of stir cast Mg/B4C metal matrix composites.Metall Mater Trans A. 2017; 48(10):5031–45. https://doi.org/10.1007/s11661-017-4203-x
  • [12] Ramanujam N, Muthukumaran S, Rao NB, Ramarao M, Mangrulkar AL, Aliaks, Pugazhendhi L, Markos M. Experimental investigations on mechanical properties of AZ31/eggshell particle-based magnesium composites. Adv. Mater Sci Eng. 2022; 1–7. https://doi.org/10.1155/2022/4883764
  • [13] Kumar KCK, Kumar BR, Rao NM.Microstructural, mechanical characterization, and fractography of AZ31/SiCreinforced composites by stir casting method. Silicon. 2021; 14:5017–27. https://doi.org/10.1007/s12633-021-01180-7
  • [14] Marimuthu M, Berchmans JL. Preparation and characterization of B4C particulate reinforced Al-Mg alloy matrix composites. Int J Mod Eng Res. 2013;3(6):1419. http://www.ijmer.com/papers/Vol3_Issue6/CG3637233729.pdf
  • [15] Kaya AA, Kayali ES, Eliezer D, Gertsberg G, Moscovitch N. Addition of B4C to AZ91 via die casting and its effect on wear behavior. Mater Sci Forum. 2005;488:741–4. http://dx.doi.org/10.4028/www.scientific.net/MSF.488-489.741
  • [16] Turan ME, Zengin H, Cevik E, Sun Y, Turen Y, Ahlatci H. Wear behaviors of B4C and SiC particle reinforced AZ91 magnesium matrix metal composites. Int J Mater Metall Eng. 2016; 10(9):1224–1227. https://zenodo.org/record/1126900/files/10005559.pdf
  • [17] Gupta M, Wong WLE. Magnesium-based nanocomposites: lightweight materials of the future. Mater Charact. 2015; 105:30–46. http://dx.doi.org/10.1016/j.matchar.2015.04.015
  • [18] Matta AK, Koka, NSS, Devarakonda SK. Recent studies on particulate reinforced AZ91 magnesium composites fabricated by stir casting — a review. J Mech Energy Eng. 2020; 4(44):115–26. https://doi.org/10.30464/jmee.2020.4.2.115
  • [19] Çevik E, Gündogğan M, ˙Incesu A, Turan M E. Corrosion behavior of grapheme nano platelet-coated TiB2 reinforced AZ91 magnesium matrix semi-ceramic hybrid composites. Hittite J Sci Eng. 2021; 8(1):27–33. https://doi.org/10.17350/HJSE19030000209
  • [20] Kulisz M, Zagórski I, Korpysa J. The effect of abrasive waterjet machining parameters on the condition of Al-Si alloy.Materials.2020; 13(14):3122. http://dx.doi.org/10.3390/ma13143122
  • [21] Huang SJ, Subramani M, Chiang CC. Effect of hybrid reinforcement on microstructure and mechanical properties of AZ61 magnesium alloy processed by stir casting method. Compos Commun.2021; 25:100772. https://doi.org/10.1016/j.coco.2021.100772
  • [22] Sathish T, Mohanavel V, Ansari K, Saravanan R, Karthick A, Afzal A, Alamri S, Saleel CA. Synthesis and characterization of mechanical properties and wire cut EDM process parameters analysis in AZ61 magnesium alloy + B4C + SiC, Materials. 2021;14(13):3689. https://doi.org/10.3390/ma14133689
  • [23] Ye HZLiu XY. Review of recent studies in magnesium matrix composites.J Mater Sci. 2004; 39(20):6153–71. https://doi.org/10.1023/B:JMSC.0000043583.47148.31
  • [24] Jalilvand MM, Mazaheri Y. Effect of mono and hybrid ceramic reinforcement particles on the tribological behavior of the AZ31 matrix surface composites developed by friction stir processing. Ceram Int. 2020; 46(12):20345–56. https://doi.org/10.1016/j.ceramint.2020.05.123
  • [25] Titarmare V, Banerjee S, Sahoo P. Fabrication and characterization of AZ31-B4C composites. Mater Today Proc 2022; 59(1):153–60. https://doi.org/10.1016/j.matpr.2021.10.373
  • [26] Zhou H,Zhang C, Han B, Qiu J, Qin S, Gao K, Liu J, Sun S, Zhang H. Microstructures and mechanical properties of nanocrystalline AZ31 magnesium alloy powders with submicron TiB2 additions prepared by mechanical milling.Crystals.2020;10(6):550. https://doi.org/10.3390/cryst10060550
  • [27] Yao, Y-T, Jiang L, Fu G-F, Chen L-Q, Wear behavior and mechanism of B4C reinforced Mg-matrix composites fabricated by metal-assisted pressure less infiltration technique. Trans Nonferrous Met Soc China. 2015; 25(8):2543–8. https://doi.org/10.1016/S1003-6326(15)63873-0
  • [28] Paramsothy M, Hassan SF, Srikanth N, Gupta M. Simultaneous enhancement of tensile/compressive strength and ductility of magnesium alloy AZ31 using carbon nanotubes. J Nano sci Nanotechnol. 2010; 10(2):956–64. https://doi.org/10.1166/jnn.2010.1809
  • [29] Aydin F, Yavuz S, EmreTuran M. Influence of TiC content on mechanical, wear and corrosion properties of hot-pressed AZ91/TiC composites. J Compos Mater. 2020; 54(2): 141–52. https://doi.org/10.1177%2F0021998319860570
  • [30] Subramani M, Huang S-J, Borodianskiy K. Effect of SiC nanoparticles on AZ31 magnesium alloy. Materials. 2022; 15(3):1004. https://doi.org/10.3390/ma15031004
  • [31] El-Morsy A-W, Abouel-Kasem A.Tribological characteristics of deformed magnesium alloyAZ61 under dry conditions. J Tribol. 2011; 133/041603-1. https://doi.org/10.1115/1.4004761
  • [32] Yan H, Wan J, Nie Q. Wear behavior of extruded nano-SiCpreinforced AZ61 magnesium matrix composites. Adv Mech Eng. 2013(5), Article ID 489528, 1–5 pages. https://doi.org/10.1155/2013/489528
  • [33] Akkoyun F, Ercetin A. Automated grain counting for the microstructure of Mg alloys using an image processing method. J Mater Eng Perform.2022; 31:2870–7. https://link.springer.com/article/10.1007/s11665-021-06436-2
  • [34] Niraj N, Pandey KM, Dey A.Tribologicalbehaviour of magnesium metal matrix composites reinforced with fly ash cenosphere. Mater Today Proc. 2018;5(9):Part 3, 20138-20144. https://www.sciencedirect.com/science/article/abs/pii/S2214785318315098
  • [35] Lim CYH, Lim SC, Gupta M. Wear behaviour of SiCp-reinforced magnesium matrix composites. Wear. 2003;255(1–6):629–37. https://www.sciencedirect.com/science/article/abs/pii/S0043164803001212
  • [36] Santhosh MS, Natrayan L, Kaliappan S, Patil PP, Rao YS, Kumar TNS, Dhanraj JA, Paramasivam P. Mechanical and wear behavior of nano-fly ash particle-reinforced Mg metal matrix composites fabricated by stir casting technique. J Nanomater. 2022;2022:1–8, https://www.hindawi.com/journals/jnm/2022/5465771/
  • [37] Singh H, Kumar D, Singh H. Development of magnesium-based hybrid metal matrix composite through in situ micro, nano reinforcements, J Compos Mater. 2020;55(1):109–23. https://journals.sagepub.com/doi/full/10.1177/0021998320946432
  • [38] Ercetin A. Application of the hot press method to produce new Mg alloys: characterization, mechanical properties, and effect of Al addition. J Mater Eng Perform.2021;30:4254–62. https://link.springer.com/article/10.1007/s11665-021-05814-0
  • [39] Ercetin A, Akkoyun F, Simsir E, Pimenov DY, Giasin K, Chandrashekarappa MPG, Lakshmikanthan A, Wojciechowski S.Image processing of Mg-Al-Sn alloy microstructures for determining phase ratios and grain size and correction with manual measurement.Materials. 2021; 14(5095):1–16. https://doi.org/10.3390/ma14175095
  • [40] Jayakumar K, Mathew J, Joseph MA, Kumar RS, Shukla AK, Samuel MG. Synthesis and characterization of A356-SiCp composite produced through vacuum hot pressing. Mater Manuf Process. 2013; 28(9):991–8. https://doi.org/10.1080/10426914.2013.773012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f359842-d31e-4202-a012-2fdb12bd9ecd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.