Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article describes a way of synchronization of communication lines in urban public transport. In the literature, no comprehensive methods have been presented to ensure the regularity of running public transport vehicles, except specific cases of this problem, which have little practical application. It demonstrates how this problem is difficult. In the article, the problem was presented more broadly – running of vehicles in different intervals, in lots of common fragments of routes, and running periods was considered. The objective function for this problem was defined, and then the algorithms to solve it were discussed. In the next part of the work, a model was verified by making synchronization of the timetables of selected lines in Ostrowiec Świętokrzyski. Three lines from the twelve were included in the analysis. The routes of these lines created seven communication bundles (i.e. the common fragments of the routes) for which synchronization was required. The results of synchronization (obtained by an author software) were new departure Times of the lines from their start stops. Finally, they were confronted with the existing timetables, which confirmed the usefulness of the proposed method.
Czasopismo
Rocznik
Tom
Strony
91--102
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
- Kazimierz Pulaski University of Technology and Humanities in Radom, Faculty of Transport and Electrical Engineering, Malczewskiego 29, 26-600 Radom, Poland
autor
- Kazimierz Pulaski University of Technology and Humanities in Radom, Faculty of Transport and Electrical Engineering, Malczewskiego 29, 26-600 Radom, Poland
Bibliografia
- 1. Adamski, A. Transfer Optimization in Public Transport. Computer-Aided Transit Scheduling. 1995. Vol. 430. P. 23-38.
- 2. Bookbinder, J.H. & Désiletes, A. Transfer Optimization in a Transit Network. Transportation Science. 1992. Vol. 26. No. 2. P. 106-118.
- 3. Borndörfer, R. & Grötschel, M. & Pfetsch, M.E. A Column-Generation Approach to Line Planning in Public Transport. Transportation Science. 2007. Vol. 41. No. 1. P. 123-132.
- 4. Borndörfer, R. & Grötschel, M. & Pfetsch, M.E. Models for Line Planning in Public Transport. Computer-aided Systems in Public Transport. 2008. Vol. 600. P. 363-378.
- 5. Ceder, A. & Golany, B. & Tal, O. Creating bus timetables with maximal synchronization. Transportation Research Part A. 2001. Vol. 35. No. 10. P. 913-928.
- 6. Ceder, A. & Tal, O. Timetable Synchronization for Buses. Computer-Aided Transit Scheduling. 1999. Vol. 471. P. 245-258.
- 7. Cevallos, F. & Zhao, F. Minimizing Transfer Times in a Public Transit Network with a Genetic Algorithm. Transportation Research Record. 2006. Vol. 1971. P. 74-79.
- 8. Chakroborty, P. Genetic Algorithms for Optimal Urban Transit Network Design. Computer-Aided Civil and Infrastructure Engineering. 2003. Vol. 18. No. 3. P. 184-200.
- 9. Chien, F. & Schonfeld, P. Joint Optimization of a Rail Transit Line and Its Feeder Bus System. Journal of Advanced Transportation. 1998. Vol. 32. No. 3. P. 253-284.
- 10. Daduna, J. & Voß, S. Practical Experiences in Schedule Synchronization. Computer-Aided Transit Scheduling. 1995. Vol. 430. P. 39-55.
- 11. Désiletes, A. & Rousseau, J.M. SYNCRO: A Computer-Assisted Tool for the Synchronization of Transfers in Public Transit Network. Computer-Aided Transit Scheduling. 1992. Vol. 386. P. 153-166.
- 12. Domschke, W. Schedule synchronization for public transit networks. OR Spectrum. 1989. Vol. 11. No. 1. P. 17-24.
- 13. Dźwigoń, W. & Hempel, L. Synchronisation of time table in public transport. In: 17th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering. Weimar, 2006.
- 14. Gen, M. & Cheng, R. Genetic Algorithms and Engineering Design/. Hoboken: John Wiley & Sons Inc. 1996. 432 p.
- 15. Hakkesteegt, P. & Muller, Th.H.J. Research increasing regularity. Verkeerskundige werkdagen. 1981. P. 415-436.
- 16. Ibarra-Rojas, O.J. & Muñoz, J.C. Synchronizing diffrent transit lines at common stops considering travel time variability: the absence of the even headway. Santiago: BRT – Centre of Excellence. 2015.
- 17. Ibarra-Rojas, O.J. & Rios-Solis, Y. Synchronization of bus timetabling. Transportation Research Part B. 2012. Vol. 46. No. 5. P. 599-614.
- 18. Ibarra-Rojas, O.J. & López-Irarragorri, F. & Rios-Solis, Y. Multiperiod Synchronization Bus Timetabling. Transportation Science. 2016. Vol. 50. No. 3. P. 805-822.
- 19. Keudel, W. Computer-Aided Line Network Design (DIANA) and Minimization of Transfer Times in Networks (FABIAN). Computer-Aided Transit Scheduling. 1988. Vol. 308. P. 315-326.
- 20. Klemt, W.D. & Stemme, W. Schedule Synchronization for Public Transit Networks. Computer-Aided Transit Scheduling. 1988. Vol. 308. P. 327-335.
- 21. Kuan, S.N. & Ong, H.L. & Ng, K.M. Solving the feeder bus network design problem by genetic algorithms and ant colony optimization. Advances in Engineering Software. 2006. Vol. 37. No. 6. P. 351-359.
- 22. Kwaśnicka, H. & Molecki, B. Timetabling of the city tram service using a genetic algorithm. In: Intelligent Information Systems VIII Proceedings of the Workshop. Ustroń, 1999.
- 23. Liebchen, C. & Möhring, R.H. The Modeling Power of the Periodic Event Scheduling Problem: Railway Timetables and Beyond. Algorithmic Methods for Railway Optimization. 2007. Vol. 4359. P. 3-40.
- 24. Liu, Z. & Shen, J. & Wang, H. & Yang, W. Regional Bus Timetabling Model with Synchronization. Journal of Transportation Systems Engineering and Information Technology. 2007. Vol. 7. No. 2. P. 109-112.
- 25. Madej, B. & Pruciak, K. & Madej, R. Publiczny transport miejski. Warszawa: Akademia Transportu i Przedsiębiorczości sp. z o.o. 2015. 628 p. [In Polish: Urban public transport]. 26. McConnell, J.J. Analysis of Algorithms: An Active Learning Approach. Sudbury: Jones and Bartlett Publishers. 2001. 297 p.
- 27. Odijk, M.A. A constraint generation algorithm for the construction of periodic railway timetables. Transportation Research B. 1996. Vol. 30. No. 6. P. 455-464.
- 28. Oort, N. Incorporating service reliabilty in public transport design and performance reqiurements: International survey results and recommendations. Research in Transportation Economics. 2014. Vol. 48. P. 92-100.
- 29. Oort N. & Nes R. Regularity analysis for optimizing urban transit network design. Public Transport. 2009. Vol. 1. P. 155-168.
- 30. Oziomek, J. & Rogowski, A. Alternatywna miara synchronizacji rozkładów jazdy. Autobusy. Technika, Eksploatacja, Systemy Transportowe. 2016. No. 6. P. 658-661. [In Polish:The alternative measure of synchornization of timetables].
- 31. Oziomek, J. & Rogowski, A. Synchronizacja miejskich linii komunikacyjnych z wykorzystaniem wielu kryteriów. Autobusy. Technika, Eksploatacja, Systemy Transportowe. 2016. No. 12. P. 26-31. [In Polish: Synchronization of urban bus lines with using multiple criteria].
- 32. Oziomek, J. & Rogowski, A. Zagadnienie synchronizacji linii komunikacyjnych w transporcie publicznym. Autobusy. Technika, Eksploatacja, Systemy Transportowe. 2016. No. 1-2. P. 12-15. [In Polish: The problem of synchronization of bus lines in public transport]. 33. Panneerselvam, R. Design and Analysis of Algorithms. New Delhi: Prentice-Hall of India Pvt. Ltd. 2007. 440 p.
- 34. Rudnicki, A. Jakość komunikacji miejskiej. Kraków: Zeszyty Naukowo-Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji Miejskiej. 1999. 384 p. [In Polish: Quality of urban public transport].
- 35. Schöbel, A. Line planning in public transportation: models and methods. OR Spectrum. 2012. Vol. 34. No. 3. P. 491-510.
- 36. Schöbel, A. & Scholl, S. Line Planning with Minimal Traveling Time. In: ATMOS 2005 – 5th Workshop on Algorithmic Methods and Models for Optimization of Railways. Palma de Mallorca, 2006.
- 37. Serafini, P. & Ukovich, W. A Mathematical Model for Periodic Scheduling Problems. SIAM Journal on Discrete Mathematics. 1989. Vol. 2. P. 550-581.
- 38. Schröder, M. & Solchenbach, I. Optimization of Transfer Quality in Regional Public Transit. Berichte des Fraunhofer ITWM. 2006. Vol. 84. P. 1-15.
- 39. Sun, Y. & Sun, X. & Li, B. & Gao, D. Joint optimization of a rail transit route and bus routes in a transit corridor. Procedia – Social and Behavioral Sciences. 2013. Vol. 96. P. 1218-1226.
- 40. Voß, S. Network Design Formulations in Schedule Synchronization. Computer-Aided Transit Scheduling. 1992. Vol. 386. P. 137-152.
- 41. Zabinsky, Z. Random Search Algorithms. Wiley Encyclopedia of Operations Research and Management Science. 2011. Vol. 8. P. 1-16.
- 42. Rozkład jazdy MPK w Ostrowcu Świętokrzyskim. Available at:http://mpkostrowiec.com.pl/index.php?page=schedule [In Polish: Timetable of MPK in Ostrowiec Świętokrzyski].
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f2ca32f-43c3-4099-a24d-52bfa3036874