PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Application of Z-Ion Substrate to Support Energy Crop Growth (Dactylis Glomerata L.) on Degraded Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Investigations concerned the effect of raising the dose of new Z-ion zeolite substrate on cocksfoot (Dactylis glomerata L.) growth. During the pot experiment, plants were grown on degraded soil, arable soil and mixtures of degraded soil with increasing Z-ion substrate additions (1%, 2%, 5%, 10% v/v). When the experiment was terminated, the mean values of the vegetative parameters of test species were calculated. The carbon to nitrogen ratio for cocksfoot stem biomass was determined. The enzyme diversity of the degraded soil enriched with substrate additions after cocksfoot growth (Shannon’s diversity index) was also evaluated. The application of Z-ion additions positively influenced the cocksfoot growth – the additions in the range of 1–10% v/v to degraded soil significantly increased wet and dry stem biomass, dry root biomass and total dry biomass of plants. It turned out that the Z-ion substrate addition not exceeding 1% v/v can be considered as one which – after introducing into a specific degraded soil – would give similar biomass yield of cocksfoot to that obtained on the selected arable soil. At 1% substrate dose, the carbon/nitrogen ratio in the plant material (27.17) was within the range of values ensuring the proper methane fermentation course. The preliminary studies have shown that a significant increase in enzyme diversity can be observed when there is a certain degree of root development caused by a sufficiently high addition of Z-ion substrate to the degraded soil – under experimental conditions it was 5% v/v Z-ion dose.
Słowa kluczowe
Rocznik
Strony
106--113
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Environmental Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Graduated student of Environmental Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Bending G.D., Turner M.K., Jones J.E. 2002. Interactions between crop residue and soil organic matter quality and functional diversity of soil microbial communities. Soil Biology & Biochemistry, 34, 1073–1082.
  • 2. Bohutskyi P., Phan D., Kopachevsky A.M., Chow S., Bouwer E.J., Betenbaugh M.J. 2018. Synergistic co-digestion of wastewater grown algae-bacteria polyculture biomass and cellulose to optimize carbon-to-nitrogen ratio and application of kinetic models to predict anaerobic digestion energy balance. Bioresource Technology, 269, 210–220.
  • 3. Boluda R., Roca-Perez L., Iranzo M., Gil C., Mormeneo S. 2014. Determination of enzymatic activities using a miniaturized system as a rapid method to assess soil quality. European Journal of Soil Science, 65, 286–294.
  • 4. Butkute B., Lemeziene N., Kanapeckas J., Navickas K., Dabkevicius Z., Venslauskas K. 2014. Cocksfoot, tall fescue and reed canary grass: Dry matter yield, chemical composition and biomass convertibility to methane. Biomass and Bioenergy, 66, 1–11.
  • 5. Chomczyńska M. 2013. Restoration of degraded soils using ion exchange materials (in Polish). Monografie Komitetu Inżynierii Środowiska PAN, 110, 1–145.
  • 6. Chen J.-B., Dong C.-C., Yao X.-D., Wang W. 2017. Effects of nitrogen addition on plant biomass and tissue elemental content in different degradation stages of temperate steppe in northern China. Journal of Plant Ecology, 11 (5), 730–739.
  • 7. Chen J., Liu L., Wang Z., Zhang Y., Sun H., Song S., Bai Z., Lu Z., Li C. 2020. Nitrogen fertilization increases root growth and coordinates the root–shoot relationship in cotton. Frontiers in Plant Science, 11, 1–13.
  • 8. Del Grosso S., Smith P., Galdos M., Hastings A., Parton W. 2014. Sustainable energy crop production. Current Opinion in Environmental Sustainability, 9–10, 20–25.
  • 9. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union, 5.6.2009.
  • 10. Fageria N.K., Moreira A. 2011. The role of mineral nutrition on root growth of crop plants. In D.L. Sparks (ed.), Advances in Agronomy 110, 251–331. Academic Press, San Diego.
  • 11. Fritsche U.R., Sims R.E.H., Monti A. 2010. Direct and indirect land-use competition issues for energy crops and their sustainable production–an overview. Biofuels, Bioproducts and Biorefining, 4, 692–704.
  • 12. Gove I.H., Patil G.P. Swindel B.F., Taille C. 1994. Ecological diversity and forest management. In G.P. Patil and C.R. Rao (eds), Handbook of Statistic 12, 409–462. Elsevier Science B.V., North-Holland, Amsterdam, London, New York, Tokyo.
  • 13. Hattori T., Morita S. 2010. Energy Crops for Sustainable Bioethanol Production; Which, Where and How? Plant Production Science, 13(3), 221–234.
  • 14. Herrmann C., Idler C., Heiermann M. 2016. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics. Bioresource Technology, 206, 23–35.
  • 15. Igliński B., Buczkowski R., Cichosz M. 2009. Bioenergetic technologies (in Polish). Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń.
  • 16. Kainthola J., Kalamdhada A.S., Gouda V.V. 2019. Optimization of methane production during anaerobic co-digestion of rice straw and Hydrilla verticillata using response surface methodology. Fuel, 235, 92–99.
  • 17. Klimiuk E., Pawłowska M., Pokój T. 2012. Biofuels. Technologies for sustainable development (in Polish). Wydawnictwo Naukowe PWN, Warszawa.
  • 18. Kosandrovich E.G., Soldatov V.S., Krasinskaya T.V., Kosandrovich S.Y., Ionova O.V., Yezubets Н.P., Vonsovich N.V., Melnikov I.O., Saprykin V.V. 2019. Universal nitrate free nutrient substrates based on chemically modified natural clinoptilolites. III International symposium on growing media, composting and substrate analysis, Abstracts, 88.
  • 19. Mocek-Płóciniak A. 2014. Biological reclamation of areas degraded after the excavation of lignite and copper ores (in Polish). Nauka, Przyroda, Technologie, 8 (3), 1–9.
  • 20. Montusiewicz A., Lebiocka M., Pawłowska M. 2008. Characterization of the biomethanization process in selected waste mixtures. Archives of Environmental Protection, 34, 49–61.
  • 21. Nabel M., Barbosa D.B.P., Korsch D., Jablonowski N.D. 2014. Energy crop (Sida hermaphrodita) fertilization using digestate under marginal soil conditions: A dose-response experiment. Energy Procedia, 59, 127–133.
  • 22. Natywa M., Selwet M., Maciejewski T. 2014. Effect of some agrotechnical factors on the number and activity soil microorganisms (in Polish). Fragmenta Agronomica, 31(2), 56–63.
  • 23. Ostrowska A., Gawliński S., Szczubiałka Z. 1991. Methods for analysis and evaluation of soil and plant properties (in Polish). Instytut Ochrony Środwiska, Warszawa.
  • 24. Polish Standard, PN-R-04023:1996. Agrochemical soil analysis – Determination of assimilated phosphorus content in mineral soil (in Polish). Polski Komitet Normalizacyjny, Warszawa
  • 25. Polish Standard PN-R-04022:1996. Agrochemical soil analysis – Determination of assimilated potassium content in mineral soil (in Polish). Polski Komitet Normalizacyjny, Warszawa
  • 26. Polish Standard PN-R-04020:1994. Agrochemical soil analysis – Determination of assimilated potassium content in mineral soil (in Polish). Polski Komitet Normalizacyjny, Warszawa
  • 27. Seppälä M. , Paavola T., Lehtomäki A., Rintala J. 2009. Biogas production from boreal herbaceous grasses – specific methane yield and methane yield per hectare. Bioresource Technology, 100, 2952–2958.
  • 28. Shingala, M.C, Rajyaguru A. 2015. Comparison of Post Hoc Tests for Unequal Variance. International Journal of New Technologies in Science and Engineering, 2 (5), 22–33.
  • 29. Tilvikiene V., Venslauskas K., Povilaitis V., Navickas K., Zuperka V., Kadziuliene Z. 2020. The effect of digestate and mineral fertilisation of cocksfoot grass on greenhouse gas emissions in a cocksfoot based biogas production system. Energy, Sustainability and Society, 10 (13), 1–15.
  • 30. Wallenius K., Rita H., Mikkonen A., Lappi K., Lindström K., Hartikainen H., Raateland A. , Niemi R.M. 2011. Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities. Soil Biology & Biochemistry, 43, 1464–1473.
  • 31. Wasąg H., Pawłowski L., Soldatov V.S., Szymańska M., Chomczyńska M., Kołodyńska M., Ostrowski J., Rut B., Skwarek A., Młodawska G. 2000. Restoration of degraded soils using ion exchange resins. Raport (in Polish). Politechnika Lubelska, Lublin.
  • 32. Wołek J. 2007. Introduction to statistics for biologists (in Polish). Wydawnictwo Naukowe Uniwersytetu Pedagogicznego w Krakowie, Kraków.
  • 33. Zawadzki S. 2009. Soil Science (in Polish). Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f264f52-7025-4969-82ea-f01bef73bbab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.