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Frequency analysis oF coupling with adjustable torsional Flexibility

analiza częstościowa sprzęgła o regulowanej podatności skrętnej*
The article presents the frequency analysis of a flexible coupling allowing changes of torsional flexibility. The authors derived 
a relationship for coupling flexibility considering geometric and material parameters. Coupling flexibility change is executed in 
such a manner that the quotient of extortion frequency and natural frequency of the system is higher than 1.4. Oscillation param-
eters for selected values of torsional flexibility were calculated for extortion frequencies approximating natural frequencies and 
after flexibility change.
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W pracy przedstawiono analizę częstościową sprzęgła podatnego umożliwiającego zmianę sztywności skrętnej. Wyprowadzono 
zależność na sztywność sprzęgła uwzględniając parametry geometryczne i materiałowe. Zmiana sztywności sprzęgła dokonuje 
się tak aby iloraz częstości wymuszenia i częstości drgań własnych układu był większy od 1,4. Obliczono parametry drgań dla 
wybranych wartości współczynnika sztywności skrętnej przy częstościach wymuszenia bliskich częstości drgań własnych oraz po 
zmianie sztywności.

Słowa kluczowe: sprzęgło podatne, sztywność skrętna, analiza częstościowa, charakterystyka amplitudowa.

1. Introduction

The development of technology in machine design and exploita-
tion extorts the necessity to choose the most favourable construction 
solutions and increasing exploitation velocity in production processes. 
Considering the results of the above-mentioned activities, one should 
conclude that the increase of movement velocity causes the increase 
of dynamic strains. Naming the relations with the term machine “dy-
namicity”, one should consider the characteristics of its mechanical 
state, i.e. the values of oscillation amplitudes of the construction as a 
whole and its individual elements and sub-assemblies. High values of 
dynamic strains have negative impact on durability, reliability, preci-
sion of work, shape errors and positioning precision [1]. The oscil-
lations during the work of driving systems strained with changeable 
moment depend on the amplitude value and the coercion frequency, 
mass inertia moments of the drive elements, torsional stiffness and 
damping. 

Mechanical systems with changeable flexibility are used as ele-
ments of coupling constructions, shafts and vibration eliminators. An 
example of such a torsional vibration eliminator using a changeable 
flexibility of neoprene rings, playing a role of springs and dampers, 
is presented in the works by Slavick and Bollinger’s [13]. Stiffness 
change results from axial relocation of countersunk screw causing the 
increase or decrease of pressure onto the rings. The range of neo-
prene flexibility changes allows adjusting the eliminator with a plate, 
weighting 20 kg, to resonance frequency of milling machine spindle 
used for device milling. In Kowal's publications [8–10] the changes 
of couplings or transmission shaft flexibility using cylindrical or disc 
push springs in packages are done with screw thread mechanisms. 
According to the author a coupling is a system effectively limiting dy-
namic strains during the set work and starting the drive system. Mod-
ule construction made of disc springs allows building systems with 
different static characteristics. Filipowicz [2–5] and Filipowicz, Kuc-
zaj [6, 11] presented new solutions of flexible systems and conducted 

theoretical and practical analysis of the double-acting couplings. The 
researchers concluded that the constructions allow obtaining torsion 
angles of a few degrees, transforming significant values of torque 
and easing momentary overloads. Moreover, they noticed that defin-
ing the most favourable characteristics of couplings (for the types of 
the machines) requires selecting the sets and systems of springs and 
threat mechanism parameters, what is possible as early as at design-
ing stage. 

The aim of the present work is to define the influence of torsional 
flexibility of the designed flexible coupling to the parameter of ex-
torted normal oscillations. The contents of the article is the following. 
Chapter 2 presents the method of solving the equations of extorted, 
deadened vibrations. Chapter 3 explains how to adjust the torsional 
stiffness of coupling. Chapter 4 contains the description of coupling 
and calculating its torsional stiffness. In chapter 5 the results of analy-
ses for ten selected values of torsional stiffness values are presented.

2. Equations of extorted vibrations and their solu-
tions

Differential equation of extorted vibrations can be presented as 
illustrated in [14]:

 Bq Cq Kq H + + = sinωt  (1)

where: B , C , K  – inertia, damping and stiffness matrices respective-
ly, H – vector, amplitude of extorting force, q – vector of generalised 
coordinates, ω – frequency of extorted vibrations [rad/s], t – time [s].

Filling the stationary solution to the vibration equation you obtain 
a system of algebraic equations in which the unknown is the vector of 
complex amplitudes a  of set extorted vibrations [14]:
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where: 1i = −  – imaginary unit.
In the case of flexible coupling, system of equations has a form of
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where: sJ  – mass moment of inertia in the rotor and rotating elements 

of active part of coupling reduced to engine rotor axis [kg·m2], mJ – 
machine inertia moment reduced to the rotation axis of output shaft 
coupling [kg·m2], c – viscous damping coefficient [N·m·s/rad], k – 

torsional stiffness [N·m/rad], M – load torque coupling, [N·m], θ1  – 

angle tilt of active part of coupling [rad], θ2  – angle tilt of passive 

part of coupling [rad].
Using formula (2) and the transformations, one obtains:
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Having solved the obtained expressions into real and imaginary parts, 
one obtains:
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where: α ω= − +2J J k J Js m s m( ) , β ω= +2 2c J Js m( ) , γ ω= cJs , 

δ ω= −k Js
2 .

The module of amplitude and the phase angle is calculated with 
the formulas [14]:

 a A Bi i i( ) [ ( )] [ ( )]ω ω ω= +2 2  (7)
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3. The selection of coupling torsional stiffness

Characteristic equation allows defining natural vibration 

frequencies ω0 . The equation has the form:

 det( )K B− =ω0
2 0                          (9)

In case of flexible coupling the equation has a form
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The calculated roots of equation (10) are:

 ω0 0=  and ω0 =
+k J J

J J
s m

s m

( )  (11)

The coupling has positive effect on the dynamic properties of the 
system provided the following condition is satisfied [12]:

 ω
ω0

2>  (12)

The torsional stiffness k must be adjusted in such a manner to 
make the coupling work at supercritical conditions, passing through 
resonance in the initial period of starting-up, when the dynamic torque 
is not yet excessively high. Placing the calculated value of main os-
cillations (11) into the relation (12) and making transformations one 
obtains the relation for the required torsional stiffness k:

 k J J
J J
s m

s m
<

+
ω2

2( )
 (13)

4. Torsional stiffness of a flexible coupling 

4.1. Coupling description

The analysis of problems concerning the influence of flexible ele-
ments stiffness on the values of dynamic loads in drive systems, brings 
to a conclusion that it is an effective method of reducing negative in-
teractions to use the devices whose construction allows obtaining an 
adaptable (within a certain range) value of torsional stiffness. Still, the 
flexibility would be changeable independently from drive movement 
parameters and external load. Considering the above information one 
should conclude that the task is satisfied by the coupling with in-built 
mechanism of fluent change of torsional stiffness [7], whose scheme 
of actions is presented in figure 1.

In the above figures the authors presented the rules governing the 
torsional flexibility coupling. Stiffness change of the system requires 
blocking the active length of flat spring connecting active and passive 
discs. The blockade is possible due to the linear movement of driv-
ing disc attached to an shaft spline. Maximum coupling flexibility is 
obtained for springs’ active length is the highest (Lmax) and minimum 
is the lowest (Lmin).

Fig. 1. The scheme of actions of flexible coupling
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Figure 2 presents the construction of the designed coupling [7]. 
In the input shaft 10 brush runs 12 are attached to power drive 11 via 
toothed gear transmission (wheels 13 and 14) and lead screw 15. The 
lead screw which can turn in active disc 16 and support plate is used 
to control the swashplate 18. Axial movement of the swashplate along 
the shaft spline 17 causes decrease of active length of flat springs 20 
limiting the angle of turn between active 16 and passive 19 discs. Flat 
springs 20 are fixed in the covers 21, which can rotate in freely in 
discs 16 and 19.

4.2. Torsional stiffness calculations

Deflection of flat spring is:

 
3

3 x

FLf
EJ

=  (14)

where: F – load force onto the spring [N], L – active length of the 

spring [mm], E  – Young’s modulus [MPa], xJ  – axial moment of 
inertia spring [mm4].

The force acting on one spring can be calculated from the formula:

 2MF
nd

=  (15)

where: d – spring distribution diameter [mm], n  – the number of 
springs.

For small angles it can be formed as:

 f d tg=
2

ψ  (16)

where: ψ  – relative angle of coupling torsion of discs [rad]

Comparing the relations (14) and (16) and using formula (15) you 
obtain:

 d tg ML
ndEJ x2
2

3

3
ψ =  (17)

For small angles expressed in radians tgψ ψ≈  thus appropriate trans-
formation of formula (17) for the right units, you can obtain the rela-
tion for torsional stiffness k:
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Figure 3 presents graph of the torsional stiffness coefficient of 
coupling k depending on active spring length L, wherein axis of k is 
logarithmic. The graph was obtained for the following coupling pa-
rameters: n = 4, d = 100 mm, Jx = 5.625 mm4, E = 2.1⋅105 MPa, L = 
(5÷105) mm.

5. Results of the analysis

The calculations were made for ten selected values of torsional 
stiffness k within the regulation range. Column 1 in table 1 contains 
the frequencies of natural oscillation (ω0) determined from the rela-
tions (11, 5, 6) and the values of angular transformations amplitudes 
of active (a1) and passive (a2) discs. The calculations employed the 
values of construction parameters of coupling presented in the previ-
ous chapter. Moreover, it was assumed that Js = 0.03 kg·m2, Jm = 10 
kg·m2, c = 0.2 N·m·s/rad and M = 3.5 N·m. Column 2 presents the 
values of torsional stiffness determining from the relation (13), with 
consideration for condition (12).

Figures 4 and 5 present the results of simulations for a selected 
calculation case presented in table 1. Figure 4 presents a graph of am-
plitude a1 with relation to extortion frequency ω . Initially, the system 
was near the resonance spot A (torsional stiffness k = 10000 N·m/rad 
whereas extortion frequency was ω = 578 rad/s and was approximat-
ing the natural frequency ω0). At that point, the value of amplitude 
was a1 = 9.017⋅10-5 rad. The change of torsional stiffness from 10000 
N·m/rad to k = 5000 N·m/rad caused system transformation to point 

Fig. 2. Flexible coupling

Fig. 4. The graph of amplitude a1 in relation to extortion ω frequency for 
torsional stiffness k = 10000 N·m/rad and k = 5000 N·m/rad

Fig. 3. Graph presenting torsional stiffness k with relation to active length of 
spring L
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B and decreasing the amplitude down to a1 = 1.046⋅10-6 rad (over 86 
times lower than in point A).

Figure 5 presents the graph of amplitude a2 with relation to extor-
tion frequency ω. In this case the decrease of a2 is not as significant 
as for a1. The decrease of torsional stiffness k = 10000 N·m/rad to k = 
5000 N·m/rad caused a decrease of amplitude a2 from z 1.177⋅10-6 rad 
down to 1.050⋅10-6 rad (points A and B).

6. Conclusions

On the basis of the discussions conducted in the framework of the 
present work, the following conclusions can be drawn:

The presented construction solution of flexible coupling (with •	
control system) may constitute a system for constant control 
and vibration compensation in mechanical systems. 
The change of torsional stiffness with relation to active spring •	
length is strongly non-linear. For the assumed geometric and 

material parameters the torsional stiffness varies from 
30.6 N·m/rad, in case of maximum spring length Lmax 
= 105 mm up to 283500 N·m/rad for minimum active 
spring length Lmin = 5 mm.

Linear change of torsional stiffness •	 k generates 
non-linear change of angular displacement of cou-
pling active disc a1. The amplitude a1 decreases and 
ranges from 0.74% to 30.62% of a1 amplitude before 
the change, wherein increase of over 10% applies the 
values of torsional stiffness k over 80 N·m/rad.

The change of •	 k has smaller influence on angular 
displacement of passive disc plate a2. For k values 
more than 1250 N·m/rad amplitude a2 decreases in 
the range of 82.56% to 98.80% of the amplitude value 
before the change and for k less than 630 N·m/rad, a2 
increase to 101%.

Fig. 4. Graph of amplitude a1 in relation to extortion ω frequency for tor-
sional stiffness k = 10000 N·m/rad and k = 5000 N·m/rad

Table 1. The values of torsional stiffness k and amplitude of angular displacement of a1 and a2 
coupling discs

1 2

k ω0 a1 a2 k a1 a2

[N·m/rad] [rad/s] [rad] [rad] [N·m/rad] [rad] [rad]

25000 914.239 5.682∙10-5 5.090∙10-7 12500 4.181∙10-7

(0.74%)
4.202∙10-7

(82.56%)

10000 578.215 9.017∙10-5 1.177∙10-6 5000 1.046∙10-6

(1.16%)
1.050∙10-6

(89.28%)

5000 408.860 1.274∙10-4 2.254∙10-6 2500 2.023∙10-6

(1.59%)
2.078∙10-6

(92.16%)

2500 289.107 1.806∙10-4 4.370∙10-6 1250 4.015∙10-6

(2.22%)
4.145∙10-6

(94.86%)

1250 204.430 2.549∙10-4 8.537∙10-6 625 8.455∙10-6

(3,32%)
8.435∙10-6

(98.80%)

630 144.553 3.606∙10-4 1.666∙10-5 312,5 1.665∙10-5

(4.62%)
1.669∙10-5

(100.21%)

315 102.623 5.101∙10-4 3.329∙10-5 157,5 3.435∙10-5

(6.73%)
3.374∙10-5

(101.34%)

160 73.139 7.199∙10-4 6.542∙10-5 80 6.596∙10-5

(9.16%)
6.586∙10-5

(100.66%)

80 51.717 1.036∙10-3 1.335∙10-4 40 1.414∙10-4

(13.64%)
1.349∙10-4

(101.03%)

60 31.670 1.208∙10-3 1.794∙10-4 30 3.700∙10-4

(30.62%)
1.816∙10-4

(101.21%)
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