PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectroscopic techniques in the investigation of extraordinary medieval Polish coins : revealing the presence of hidden cores

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spectroscopic techniques in the investigation of extraordinary medieval Polish coins : revealing the presence of hidden coresCross denars, frequently found in Polish hoards, were traditionally thought to be Ag coins with some Cu content. This study investigates the possibility of a hidden Cu core beneath the Ag or Ag–Cu surface of these coins. It raises questions about whether they were counterfeits or intentionally designed for mass production. Unlike Roman denarii, which revealed their cores when broken, the examination of cross denars without damage is challenging. Optical microscopy and microanalysis revealed differences in the composition of early medieval Polish coins, challenging the belief that cross denars were homogeneous Ag–Cu alloys. Detailed spectroscopic analyses, including energy-dispersive X-ray fluorescence (ED-XRF), scanning electron microscopy with energy- -dispersive X-ray spectroscopy (SEM-EDS), micro X-ray fluorescence (XRF), and microparticle-induced X-ray emission (-PIXE) measurements, were conducted. These analyses of two cross denars uncovered one composed of an Ag–Cu alloy and another manufactured by plating a Cu–Zn core with an Ag sheet. This suggests the need for further research in the history and technology of minting in Poland in the Early Middle Ages. It also prompts a reconsideration of the applicability of noninvasive X-ray techniques for archaeological examinations.
Słowa kluczowe
Czasopismo
Rocznik
Strony
19--27
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • National Centre for Nuclear Research Andrzeja Sołtana St. 7, 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana St. 7, 05-400 Otwock-Świerk, Poland
  • Institute of Archaeology, Jagiellonian University Gołębia St. 11, 31-007 Kraków, Poland
  • Jožef Stefan Institute Jamova 39, SI-1000 Ljubljana, Slovenia
autor
  • Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
  • Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
  • Institute of Archaeology and Ethnology, Polish Academy of Sciences, Interdisciplinary Center of Archaeological Research, Kalisz, Poland
  • AGH University of Krakow, Faculty of Foundry Engineering, Reymonta St. 23, 30-059 Kraków, Poland
Bibliografia
  • 1. Gójska, A. M., Miśta-Jakubowska, E. A., Banaś, D., Kubala-Kukuś, A., & Stabrawa, I. (2019). Archaeological applications of spectroscopic measurements. Compatibility of analytical methods in comparative measurements of historical Polish coins. Measurement, 135(6), 869–874. DOI: 10.1016/j .measurement.2018.11.089.
  • 2. Pańczyk, E., Sartowska, B., Waliś, L., Dudek, J., Weker, W., & Widawski, M. (2015). The origin and chronology of medieval silver coins based on the analysis of chemical composition. Nukleonika, 60(3), 657–663. DOI: 10.1515/nuka-2015-0108.
  • 3. Pięta, E., Lekki, J., Julio, M., & Meléndez, H. (2018). Surface characterization of medieval silver coins minted by the early Piasts: FT-IR mapping and SEM/EDX studies. Surf. Interface Anal., 50(1), 78–8 6. DOI: 10.1002/sia.6338.
  • 4. Parreira, P. S., Appoloni, C. R., Maria, R., Vieira, L., Scorzelli, R. B., Le Corre, L., Guerra, M. F., & Lobo Vieira, R. M. (2009). Precious metals determination in ancient coins by portable ED-XRF spectroscopy with a 238Pu source. Archeosciences, 33(33), 313–318. DOI: 10. 4000/archeosciences.2396.
  • 5. Baldassarri, M., Cavalcanti, G. D. H., Ferretti, M., Gorghinian, A., Grifoni, E., Legnaioli, S., Lorenzetti, G., Pagnotta, S., Marras, L., Violano, E., Lezzerini, M., & Palleschi, V. (2014). X-ray fluorescence analysis of XII–XIV century Italian gold coins. J. Archaeol., 2014, 1–6. DOI: 10.1155/2014/519218.
  • 6. Lei, J., Zeng, L., Tong, H., Yu, X., Liu, J., & Hu, J. (2003). Characterization of Kangxi coins of Tsing Empire by SEM-EDS. Mikrochim. Acta, 127, 123–127. DOI: 1 0.1007/s00604-003-0016-2.
  • 7. Buccolieri, A., Buccolieri, G., Filippo, E., Manno, D., Sarcinelli, G., Siciliano, A., Vitale, R., & Serra, A. (2014). Nondestructive analysis of silver coins minted in Taras (South Italy) between the V and the III centuries BC. J. Archaeol., 2014, 1–12. DOI: 10.1155/2014/171243.
  • 8. del Hoyo-Meléndez, J. M., Matosz, M., Walanus, A., & Krupska-Wolas, P. (2023). Advantages and limitations of archaeometric analysis of archaeological metals: A focus on statistical methods applied to portable XRF spectrometry data. J. Archaeol. Sci.-Rep., 51, 104156. DOI: 10.1 016/j.jasrep.2023.104156.
  • 9. Miśta-Jakubowska, E. (2022). Microanalysis of early medieval archaeological objects made of silver alloy.Wiadomości Numizmatyczne, LXVI, 111–139. DOI: 10.24425/wn.2022.141936.
  • 10. Miśta-Jakubowska, E. (2021). Mikroanaliza wczesnośredniowiecznych zabytków zawierających stopy srebra. Doctoral dissertation, National Centre for Nuclear Research, Otwock, Poland.
  • 11. Kędzierski, A. (1998). Polskie denary krzyżowe w skarbie ze Słuszkowa. Wiadomości Nu mizmatyczne, XLII, 163.
  • 12. Moreno-Suárez, A. I., Ager, F. J., Scrivano, S., Ortega-Feliu, I., Gómez-Tubío, B., & Respaldiza, M. A. (2015). First attempt to obtain the bulk composition of ancient silver–copper coins by using XRF and GRT. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 358, 93–97. DOI: 10 .1016/j.nimb.2015.05.038.
  • 13. Ingo, G. M., Balbi, S., de Caro, T., Fragalà, I., Riccucci, C., & Bultrini, G. (2006). Microchemical investigation of Greek and Roman silver and gold plated coins: coating techniques and corrosion mechanisms. Appl. Phys. A, 83(4), 623–629. DOI: 1 0.1007/s00339-006-3536-x.
  • 14. Volpi, V., Chiarantini, L., Cicali, C., & Salvadori, B. (2023). Shedding light on the microstructure and chemical composition of rare early medieval coinsfrom Italy (Berengario I) by combining pXRF and SEM–EDX analysis. Archaeol. Anthropol. Sci., 15(3).DOI: 10 .1007/s12520-023-01726-3.
  • 15. Corsi, J., Maróti, B., Re, A., Kasztovszky, Z., Szentmiklósi, L., Torbágyi, M., Agostino, A., Angelici, D., & Allegretti, S. (2015). Compositional analysis of a historical collection of Cisalpine Gaul’s coins kept at the Hungarian National Museum. J. Anal. At. Spectrom., 30(3), 730–737. DOI: 10.1039/C4JA00398E.
  • 16. Gumowski, M. (1914). Podręcznik numizmatykipolskiej. Kraków: Towarzystwo Numizmatyczne. 17. Gauvin, R., Lifshin, E., Demers, H., Horny, P., & Campbell, H. (2006). Win X-ray: A new Monte Carlo program that computes X-ray spectra obtained with a scanning electron microscope. Microsc. Microanal., 12(01), 49–64. DOI: 1 0.1017/S1431927606060089.
  • 18. Gójska, A. M., & Miśta-Jakubowska, E. A. (2016). Analysis of the elemental composition of the artefacts from the Kosewo archaeological site. Acta Phys. Pol. A, 130(6), 1415–1419. DOI: 10.12693/APhysPolA.130.1415.
  • 19. Gójska, A. M., & Miśta-Jakubowska, E. A. (2018). Calibration and detection limits of homemade EDXRF system in the analysis of silver-copper alloys. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 433(6), 28–33. DOI: 10.1016/j.nimb.2018.07.026.
  • 20. Šmit, Ž., Pelicon, P., Simčič, J., & Istenič, J. (2005). Metal analysis with PIXE: The case of Roman military equipment. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 239(1/2), 27–34. DOI: 10.1016/j.nimb.2005.06.177.
  • 21. Šmit, Ž., & Šemrov, A. (2006). Early medieval coinage in the territory of Slovenia. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 252(2), 290–298. DOI: 10.1016/j.nimb.2006.08.014.
  • 22. Ryan, C. G., Laird, J. S., Fisher, L. A., Kirkham, R., & Moorhead, G. F. (2015). Improved dynamic analysis method for quantitative PIXE and SXRF element imaging of complex materials. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 363, 42–47. DOI: 10.1016/j.nimb.2015.08.021.
  • 23. Vogel-Mikuš, K., Pelicon, P., Vavpetič, P., Kreft, I., & Regvar, M. (2009). Elemental analysis of edible grains by micro-PIXE: Common buckwheat case study. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 267(17), 2884–2889. DOI: 10.1016/j.nimb.2009.06.104.
  • 24. Linke, R., & Schreiner, M. (2000). Energy dispersive X-ray fluorescence analysis and X-ray microanalysis of medieval silver coins. Microchim. Acta, 133(1/4), 165–170. DOI: 10.1007/s006040070087.
  • 25. Beck, L., Bosonnet, S., Réveillon, S., Eliot, D., & Pilon, F. (2004). Silver surface enrichment of silver–copper alloys: a limitation for the analysis of ancient silver coins by surface techniques. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 226(1/2), 153–162. DOI: 10.1016/j.nimb.2004.06.044.
  • 26. Kantarelou, V., Ager, F. J., Eugenidou, D., Chaves, F., Andreou, A., Kontou, E., Katsikosta, N., Respaldiza, M. A., Serafi n, P., Sokaras, D., Zarkadas, C., Polikreti, K., & Karydas, A. G. (2011). X-ray fluorescence analytical criteria to assess the fineness of ancient silver coins: Application on Ptolemaic coinage. Spectrochim. Acta Pt. B-Atom. Spectr., 66(9/10), 681–690. DOI: 10.1016/j.sab.2011.08.001.
  • 27. Borges, R., Alves, L., Silva, R. J. C., Araújo, M. F., Candeias, A., Corregidor, V., Valério, P., & Barrulas, P. (2017). Investigation of surface silver enrichment in ancient high silver alloys by PIXE, EDXRF, LAICP-MS and SEM-EDS. Microchem. J., 131, 103–111. DOI: 10.1016/j.microc.2016.12.002.
  • 28. Ager, F. J., Ferretti, M., Grilli, M. L., Juanes, D., Ortega-Feliu, I., Respaldiza, M. A., Roldán, C., & Scrivano, S. (2017). Reconsidering the accuracy of X-ray fluorescence and ion beam based methods when used to measure the thickness of ancient gildings. Spectrochim. Acta Pt. B-Atom. Spectr., 135, 42–47. DOI: 10.1016/j.sab.2017.06.017.
  • 29. Klockenkämper, R., Bubert, H., & Hasler, K. (1999). Detection of near-surface silver enrichment on Roman imperial silver coins by X-ray spectral analysis. Archaeometry, 41(2), 311–320. DOI: 10.1111/j. 1475-4754.1999.tb00985.x.
  • 30. Chabrzyk, P., & Młodecka, H. (2013). Obecność cynku w monetach pochodzących z wczesnośredniowiecznych skarbów z Polski Środkowej. In P. Boroń (Ed.), Argenti fossores et alii. Znaczenie gospodarcze wschodnich części Górnego Śląska i zachodnich krańców Małopolski w późnej fazie wczesnego średniowiecza (X–XII wiek) (pp. 246–249). Wrocław: Wydawnictwo Chronicon.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f2338df-2d9b-471f-9a24-edc4ce35824a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.