PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cavitating Fuel Flows in Hypocycloid Pump from the Perspective of Applying the Effect of Gas Desorption from The Solution with Nucleation of Gas Bubbles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article focuses on the cavitation mechanism from the perspective of utilizing the effect of gas desorption from the solution with nucleation of gas bubbles. This effect is an innovative approach to improving the operating parameters, including emissions parameters, in the compression-ignition engines. The article presents the concept of applying this process in practice and draws attention to the problems associated with its practical implementation. With regard to this issue, an original pump design with a hypocycloid power transmission, enabling application of the desorption effect, was presented. The second part of the article focuses on evaluating the possibility of cavitation occurring in the pump. This task was realized by simulating the cavitating flows in the pump’s return valve – the site at the greatest risk of formation of the first nuclei of this unfavorable phenomenon.
Twórcy
  • Faculty of Transport Engineering, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
Bibliografia
  • 1. ANSYS FLUENT 2015 User’s guide
  • 2. Bajerlein M., Rymaniak L., Swiatek P., Ziolkowski A., Daszkiewicz P. and Dobrzynski M. Modification of a Hybrid City Bus Powertrain in the Aspect of Lower Fuel Consumption and Exhaust Emissions. Experimental and Applied Mechanics (EAM) Book Series: Applied Mechanics and Materials, Volume: 518, 108–113.
  • 3. Beatrice C., Di Iorio S., Guido C., Mancaruso E. et al. Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro4 Automotive Diesel Engine. SAE Int. J. Engines, 2(2), 2010, 542–561.
  • 4. Buchal C., Karl H-D., and Sinn H-W Kohlemotoren, Windmotoren und Dieselmotoren: Was zeigt die CO2-Bilanz? ifo Schnelldienst, 8/2019, 2019, 40–55.
  • 5. Kamasamudram K., Henry C., Currier N., and Yezerets, A. N2O Formation and Mitigation in Diesel Aftertreatment Systems. SAE Int. J. Engines, 5(2), 2012, 688–698.
  • 6. Kamimoto T., Murayama Y., Minagawa T. and Minami T. Light scattering technique for estimating soot massloading in diesel particulate filters. International Journal of Engine Research, Vol. 10, 2009, 324–336.
  • 7. Kozak W., Bajerlein M. and Markowski J. Weryfikacja koncepcji wspomagania mechanizmu rozpylenia oleju napędowego rozpuszczonym w nim powietrzem. Combustion Engines, 1/2006 (124), 2006, 21–37.
  • 8. Kozak W. Kształtowanie parametrów wtrysku do silników o zapłonie samoczynnym. Poznan Univeristy of Technology Publishing House, 2008.
  • 9. Kozak W., Markowski J. Współczynnik rozpusz-czalności powietrza i spalin w oleju napędowym. Archiwum Spalania, 3(2–4), 2003, 50–61.
  • 10. Kozubkova M., Bojko M., Jablonska J., Homa D. and Tuma J. Experimental research of multiphase flow with cavitation in the nozzle. EPJ Web of Conferences 114, 02058, 2016, 1–8.
  • 11. Kudźma Z. and Mackiewicz O. Badanie zjawiska kawitacji w pompach wyporowych. Pomiary Automatyka Robotyka, R. 20, Nr 1/2016, 2016, 17–23
  • 12. Kuszewski H., Jaworski A., Ustrzycki A., Lejda K., Balawender K. and Woś P. Use of the constant volume combustion chamber to examine the properties of autoignition and derived cetane number of mixtures of diesel fuel and ethanol. Fuel, Volume 200, 2017, 564–575.
  • 13. Matsumoto S., Yamada K. and Date K. Concepts and Evolution of Injector for Common Rail System. SAE Technical Paper 2012–01–1753, 2012, 1–14.
  • 14. Meek G., Williams R., Thornton D., Knapp P. and Cosser S. F2E – Ultra High Pressure Distributed Pump Common Rail System. SAE Technical Paper, 2014–01–1440, 2014, 1–8.
  • 15. Merkisz J., Bajerlein M., Kozak W. and Markowski J. The Influence of CNG Dissolved in the Diesel Fuel on the Combustion Process and Concentration of Toxic Compounds in Exhaust Gas. SAE Technical Paper, 2008–01–1815, 2008, 1–8.
  • 16. Merkisz J., Bajerlein M. and Kozak W. Dissolving Oxygen in Diesel Fuel as a Way to Make Road Transport More Environmentally Friendly. WIT Transactions on The Built Environment, Vol 101, 2008, 325–334.
  • 17. Merkisz J., Kozak M., Kozak W. and Bajerlein M. Dissolving Gas in Diesel Fuel as a Way for Fuel Oxygenation and Diesel Exhaust Emissions Reduction. SAE Technical Paper, 2007–01–2049, 2007, 1907–1914.
  • 18. Merkisz J., Kozak W., Bajerlein M. and Markowski J. The Influence of Exhaust Gases Dissolved in Diesel Oil on Fuel Spray Particulary Parameters. SAE Technical Paper, 2007–01–0488, 2007, 1–9
  • 19. Merkisz J., Mizera J., Bajerlein M., Rymaniak L. and Maj P. The Influence of Laser Treatment and the Application of Reduced Pressure Force Piston Rings on the Engine Exhaust Emissions under the Conditions of Engine Lubrication with Different Engine Oils. Applied Mechanics and Materials, Trans Tech Publications, Vol. 518, 2014, 102–109.
  • 20. Messagie M. Life Cycle Analysis of the Climate Impact of Electric Vehicles. Transport & Environment – Raport, 2014, 1–15.
  • 21. Mocek P. Analiza numeryczna zaworu kulowego – charakterystyka przepływowa i kawitacyjna. Pomiary Automatyka Kontrola, vol. 57, nr 1/2011, 2011, 97–100.
  • 22. Nagata K. State-Of-Art Technologies For Diesel Common Rail System. SAE Technical Paper 2004–28–0068, 2004, 442–447.
  • 23. Ottinger N., Schmidt N., and Liu Z. Understanding System- and Component-Level N2O Emissions from a Vanadium-Based Nonroad Diesel Aftertreatment System. SAE Int. J. Engines, 10(4), 2017,1808–1814.
  • 24. Paszko M. and Łygas K. Współczesne metody modelowania przepływów turbulentnych w otoczeniu poruszającego się autobusu miejskiego. Autobusy: technika, eksploatacja, systemy transportowe, 12/2016, 2016, 1269–1272.
  • 25. Puffary B. Numerical modelling of cavitation, design and analysis of high speed pumps. Educational Notes RTO-EN-AVT-143, paper 3, 2006, 1–55.
  • 26. Schnerr G. H., Sauer J. Physical and Numerical Modelling of Unsteady Cavitation Dynamics. ICMF-2001, 4th International Conference on Multiphase Flow, New Orleans, USA 2001, 1–12.
  • 27. Wloka J., Pflaum S., and Wachtmeister, G. Potential and Challenges of a 3000 Bar Common-Rail Injection System Considering Engine Behavior and Emission Level. SAE Int. J. Engines, 3(1), 2010, 801–813.
  • 28. Woś P., Balawender K., Jakubowski M., Kuszewski H., Lejda K. and Ustrzycki A. Design of Affordable Multi-Cylinder Variable Compression Ratio (VCR) Engine for Advanced Combustion Research Purposes. SAE Technical Paper, 2012–01–0414, 2012, 1–10.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f20b5c9-0ccb-4f35-b3f9-c65a0d487fac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.