PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rola homogenizacji w predykcji nośności opakowań z tektury falistej – przegląd metod i zastosowań

Identyfikatory
Warianty tytułu
EN
The role of homogenization in predicting the load-bearing capacity of corrugated packaging – a short review of methods and applications
Języki publikacji
PL
Abstrakty
PL
Artykuł omawia kluczową rolę homogenizacji w predykcji nośności opakowań z tektury falistej, podkreślając metody i techniki stosowane w tym procesie. Homogenizacja pozwala na uproszczenie złożonej struktury tektury falistej, co prowadzi do zwiększenia efektywności obliczeń i precyzyjniejszej predykcji wytrzymałości. Przegląd przedstawia różnorodne metody homogenizacji, takie jak: metoda Voigta-Reussa-Hill, Mori-Tanaki, metoda samouzgodniona oraz ich zastosowanie w modelowaniu właściwości mechanicznych. W pracy omówiono także zastosowanie metod numerycznych, w tym metody elemen tów skończonych (MES), które porównano z metodami eksperymentalnymi. Praktyczne zastosowania homogenizacji zilustrowano za pomocą studiów przypadków, ukazując korzyści w projektowaniu i optymalizacji opakowań. Przegląd wskazuje również na obecne wyzwania i przyszłe kierunki badań, podkreślając znaczenie wyników dla przemysłu opakowaniowego, zwłasz cza w kontekście poprawy wytrzymałości, efektywności materiałowej oraz optymalizacji kosztów produkcji.
EN
This article discusses the crucial role of homogenization in predicting the load-bearing capacity of corrugated board packaging, emphasizing the methods and techniques used in this process. Homogenization simplifies the complex structure of corrugated board, leading to increased com putational efficiency and more precise strength predictions. The review presents various homogenization methods, such as the Voigt-Reuss-Hill, Mori-Tanaka, and self-consistent methods, and their application in modeling mechanical properties. The article also discusses the use of numerical methods, including the finite element method (FEM), and compares them with experimental methods. Practical applications of homogenization are illustrated through case studies, highlighting the benefits in the design and optimization of packaging. The review also identifies current challenges and future research directions, emphasizing the importance of the results for the packaging industry, particularly in terms of improving strength, material efficiency, and production cost optimization.
Rocznik
Strony
271--278
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
  • Uniwersyteckie Centrum Ekomateriałów, Uniwersytet Przyrodniczy w Poznaniu
Bibliografia
  • [1] Aboura Z., Talbi N., Allaoui S., Benzeggagh M. L. 2004. “Elastic behavior of corrugated cardboard: Experiments and modeling”. Com posite Structures 63 (1) : 53-62. https://doi.org/10.1016/S0263- 8223(03)00131-4
  • [2] Altmann R., Henning P., Peterseim D. 2021. “Numerical homogeni zation beyond scale separation”. Acta Numerica 30, 1-86. https:// doi.org/10.1017/S0962492921000015
  • [3] Andrianov I. V., Awrejcewicz J., Danishevskyy V. V. 2018. “Con ductivity of fibre composites: Analytical homogenization appro ach”. In Advanced Structured Materials (Vol. 77). https://doi. org/10.1007/978-3-319-65786-8_3
  • [4] Annin B. D., Kolpakov A. G., Rakin S. I. 2017. “Homogenization of cor rugated plates based on the dimension reduction for the periodicity cell problem”. In Advanced Structured Materials (Vol. 46). https:// doi.org/10.1007/978-3-319-56050-2_3
  • [5] Bartolozzi G., Baldanzini N., Pierini M. 2014. „Equivalent properties for corrugated cores of sandwich structures: A general analytical method”. Composite Structures 108 (1) : 736-746. https://doi. org/10.1016/j.compstruct.2013.10.012
  • [6] Bartolozzi G., Pierini M., Orrenius U., Baldanzini N. 2013. „An equiva lent material formulation for sinusoidal corrugated cores of structural sandwich panels”. Composite Structures 100, 173-185. https://doi. org/10.1016/j.compstruct.2012.12.042
  • [7] Battaglia G., Matteo A. D., Pirrotta A., Micale G. 2017. “Dynamic response of equivalent orthotropic plate model for stiffened plate: Numerical-experimental assessment”. Procedia Engineering 199, 1423-1428. https://doi.org/10.1016/j.proeng.2017.09.387
  • [8] Beck M., Fischerauer G. 2022. “Modeling Warp in Corrugated Card board Based on Homogenization Techniques for In-Process Measu rement Applications”. Applied Sciences (Switzerland) 12 (3). https:// doi.org/10.3390/app12031684
  • [9] Biancolini M. E. 2005. “Evaluation of equivalent stiffness properties of corrugated board”. Composite Structures 69 (3) : 322-328. https:// doi.org/10.1016/j.compstruct.2004.07.014
  • [10] Blanc X., le Bris C., Legoll F. 2016. “Some variance reduction methods for numerical stochastic homogenization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374 (2066). https://doi.org/10.1098/rsta.2015.0168
  • [11] Buannic N., Cartraud P., Quesnel T. 2003. “Homogenization of corru gated core sandwich panels”. Composite Structures 59 (3) : 299-312. https://doi.org/10.1016/S0263-8223(02)00246-5
  • [12] Cheon Y.-J., & Kim H.-G. 2015. “An equivalent plate model for cor rugated-core sandwich panels”. Journal of Mechanical Science and Technology 29 (3) : 1217-1223. https://doi.org/10.1007/s12206-015- 0235-6
  • [13] Cornaggia A., Gajewski T., Knitter-Piątkowska A., Garbowski T. 2023. „Influence of Humidity and Temperature on Mechanical Properties of Corrugated Board-Numerical Investigation”. BioResources 18 (4) : 7490-7509. https://doi.org/10.15376/biores.18.4.7490-7509
  • [14] Doghri I., el Ghezal M. I., Adam L. 2016. “Finite strain mean-field homogenization of composite materials with hyperelastic-plastic constituents”. International Journal of Plasticity, 81, 40–62. https:// doi.org/10.1016/j.ijplas.2016.01.009
  • [15] Duong P. T. M. 2017. “Analysis and simulation for the double corru gated cardboard plates under bending and in-plane shear force by homogenization method”. International Journal of Mechanics (11) : 176-181.
  • [16] Efendiev Y., Kronsbein C., Legoll F. 2015. “Multilevel monte carlo approaches for numerical homogenization”. Multiscale Modeling and Simulation 13 (4) : 1107-1135. https://doi.org/10.1137/130905836
  • [17] Eidel B., Fischer A. 2018. “The heterogeneous multiscale finite ele ment method for the homogenization of linear elastic solids and a comparison with the FE2 method”. Computer Methods in Applied Mechanics and Engineering 329, 332-368. https://doi.org/10.1016/j. cma.2017.10.001
  • [18] Faraci D., Comi C. 2021. “Asymptotic homogenization of metama terials elastic plates”. Journal of Physics: Conference Series 2015 (1). https://doi.org/10.1088/1742-6596/2015/1/012038
  • [19] http://www.fematsystems.pl
  • [20] Frénod E. 2015. “An attempt at classifying homogenization-based numerical methods. Discrete and Continuous Dynamical Systems” – Series S, 8(1), i–vi. https://doi.org/10.3934/dcdss.2015.8.1i
  • [21] Garbowski T., Gajewski T. 2021. “Determination of transverse she ar stiffness of sandwich panels with a corrugated core by nume rical homogenization”. Materials 14 (8). https://doi.org/10.3390/ ma14081976
  • [22] Garbowski T., Jarmuszczak M. 2014. „Homogenization of corrugated board. Part 2. Numerical homogenization”. Przegląd Papierniczy 70 (7) : 390-394.
  • [23] Garbowski T., Jarmuszczak M. 2014. „Homogenization of corrugated paperboard. Part 1. Analytical homogenization”. Przegląd Papierniczy 70 (6) :345-349.
  • [24] Garbowski T., Jarmuszczak M. 2014. „Numerical strength estimate of corrugated board packages. Part 1. Theoretical assumptions in numerical modeling of paperboard packages”. Przegląd Papierniczy 70 (4) : 219-222.
  • [25] Garbowski T., Jarmuszczak M. 2014. „Numerical strength estimate of corrugated board packages. Part 2. Experimental tests and nu merical analysis of paperboard packages”. Przegląd Papierniczy 70 (5) :277-281.
  • [26] Garbowski, T., Knitter-Piątkowska, A., & Mrówczyński, D. (2021). Nu merical homogenization of multi-layered corrugated cardboard with creasing or perforation. Materials 14 (14). https://doi.org/10.3390/ ma14143786
  • [27] Garbowski T., Marek A. 2014. “Homogenization of corrugated boards through inverse analysis”. OPT-i 2014 - 1st International Conference on Engineering and Applied Sciences Optimization, Proceedings.
  • [28] Griso G. 2014. “Error estimates in periodic homogenization with a non-homogeneous Dirichlet condition”. Asymptotic Analysis 87 (1–2) 91–121. https://doi.org/10.3233/ASY-131200
  • [29] Hawa T., Ahmed C. D. 2021. “Third-Order Corrections in Periodic Homogenization for Elliptic Problem”. Mediterranean Journal of Mathematics 18 (4). https://doi.org/10.1007/s00009-021-01727-3
  • [30] Luong V. D., Abbes F., Hoang M. P., Duong P. T. M., Abbes B. 2021. “Finite element elastoplastic homogenization model of a corrugated- -core sandwich structure”. Steel and Composite Structures 41 (3) : 437–445. https://doi.org/10.12989/scs.2021.41.3.437
  • [31] Mahnken R., Ju X. 2020. “Goal-oriented adaptivity based on a model hierarchy of mean-field and full-field homogenization methods in linear elasticity”. International Journal for Numerical Methods in Engineering 121 (2) : 277-307. https://doi.org/10.1002/nme.6209
  • [32] Marek A., Garbowski T. 2015. “Homogenization of sandwich panels”. Computer Assisted Methods in Engineering and Science 22 (1).
  • [33] Maurel A., Pham K., Marigo J.-J. 2019. “Homogenization of thin 3D periodic structures in the time domain - effective boundary and jump conditions. In Fundamentals and Applications of Acoustic Metamaterials: From Seismic to Radio Frequency”. https://doi. org/10.1002/9781119649182.ch4
  • [34] Meng L., Lan X., Zhao J., Wang Z. 2020. “Equivalent models and me chanical properties of bio-inspired corrugated sandwich structures subjected to bending loads”. Composite Structures 244. https://doi. org/10.1016/j.compstruct.2020.112257
  • [35] Mityushev V. 2022. “Effective properties of two-dimensional disper sed composites. Part II. Revision of self-consistent methods”. Com puters and Mathematics with Applications 121, 74-84. https://doi. org/10.1016/j.camwa.2022.07.003
  • [36] Mrówczyński D., Garbowski T. 2023. “Influence of Imperfections on the Effective Stiffness of Multilayer Corrugated Board”. Materials 16 (3). https://doi.org/10.3390/ma16031295
  • [37] Mrówczyński D., Knitter-Piątkowska A., Garbowski T. 2022. „Nu merical Homogenization of Single-Walled Corrugated Board with Imperfections”. Applied Sciences (Switzerland) 12 (19). https://doi. org/10.3390/app12199632
  • [38] Mrówczyński D., Pozorska J., Garbowski T., Pozorski Z. 2023. „Ben ding Stiffness of Unsymmetrical Multilayered Corrugated Board: Influence of Boundary Conditions”. BioResources 18 (4) : 7611-7628. https://doi.org/10.15376/biores.18.4.7611-7628
  • [39] Pandit U. K., Mondal G., Punera D. 2023. “Lateral torsional buckling analysis of corrugated steel web girders using homogenization approach”. Journal of Constructional Steel Research 210. https:// doi.org/10.1016/j.jcsr.2023.108099
  • [40] Park K.-J., Jung K., Kim,Y.-W. 2016. “Evaluation of homogenized effective properties for corrugated composite panels”. Composite Structures, 140, 644–654. https://doi.org/10.1016/j.compstru ct.2016.01.002
  • [41] Pivovarov D., Zabihyan R., Mergheim J., Willner K., Steinmann P. 2019. “On periodic boundary conditions and ergodicity in computational homogenization of heterogeneous materials with random microstru cture”. Computer Methods in Applied Mechanics and Engineering 357. https://doi.org/10.1016/j.cma.2019.07.032
  • [42] Suarez B., Muneta L. M., Romero G., Sanz-Bobi J. D. 2021. “Efficient design of thin wall seating made of a single piece of heavy-duty corrugated cardboard”. Materials 14 (21). https://doi.org/10.3390/ ma14216645
  • [43] Suarez B., Muneta M. L. M., Sanz-Bobi, J. D., Romero G. 2021. „Application of homogenization approaches to the numerical analy sis of seating made of multi-wall corrugated cardboard”. Composite Structures 262. https://doi.org/10.1016/j.compstruct.2021.113642
  • [44] Szewczyk, W., Głowacki, K. 2014. „Effect of humidity on paper and corrugated board strength parameters | Wpływ wilgotności na wskaźniki wytrzymałościowe tektury falistej”. Fibres and Textiles in Eastern Europe 22 (5) : 133-137.
  • [45] Yanes V., Sabina F. J., Espinosa-Almeyda Y., Otero J. A., Rodríguez- -Ramos R. 2022. „Asymptotic homogenization approach applied to Cosserat heterogeneous media. In Mechanics and Physics of Stru ctured Media: Asymptotic and Integral Equations Methods of Leonid Filshtinsky”. https://doi.org/10.1016/B978-0-32-390543-5.00026-8
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8f1fed1a-5101-47a5-b9f3-b71493fdc783
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.